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Abstract

John Maynard Smith and Eörs Szathmáry argued that human language signified the eighth major transition in
evolution: human language marked a new form of information transmission from one generation to another [May-
nard Smith J, Szathmáry E. The major transitions in evolution. Oxford: Oxford Univ. Press; 1995]. According to
this view language codes cultural information and as such forms the basis for the evolution of complexity in human
culture. In this article we develop the theory that language also codes information in another sense: languages code
information on their own structure. As a result, languages themselves provide information that influences their own
survival. To understand the consequences of this theory we discuss recent computational models of linguistic evo-
lution. Linguistic evolution is the process by which languages themselves evolve. This article draws together this
recent work on linguistic evolution and highlights the significance of this process in understanding the evolution
of linguistic complexity. Our conclusions are that: (1) the process of linguistic transmission constitutes the basis
for an evolutionary system, and (2), that this evolutionary system is only superficially comparable to the process of
biological evolution.
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1. Introduction

[. . .] if we view life on the largest scale, from the first replicating molecules, through simple cells, mul-
ticellular organisms, and up to human societies, the means of transmitting information have changed.
It is these changes that we have called the ‘major transitions’: ultimately, they are what made the
evolution of complexity possible [64, p. 3].
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At some point in the last five million years the arrival of human language signified what Maynard
Smith and Szathmáry consider to be the eighth major transition in evolution [63,64]. Language, when
compared with every known communication system in the natural world, exhibits unsurpassed complex-
ity. It allows an indefinite number of concepts to be expressed by combining a discrete set of units. This is
why, for Maynard Smith and Szathmáry, “[t]he analogy between the genetic code and human language is
remarkable” [64, p. 169]. Furthermore, human language, as a means of transmitting information, exhibits
defining characteristics of major evolutionary transitions. Firstly, language provided a new medium for
information transmission across generations. Secondly, the mechanism used to solve the transmission
problem is quite unlike those which preceded it. But in what sense does language carry information?
And what mechanisms underly and influence this mode of information transmission? This article brings
together a body of work that responds to these questions.
Language is undoubtedly required to support many cultural artifacts and practices such as, for exam-

ple, religion. It is this kind of complexity that Maynard Smith and Szathmáry appeal to when framing
language as a major transition in evolution. The complexity of human society and culture rests on the
productivity of language, and how it enables complex informational structures to withstand repeated cul-
tural transmission from one generation to the next. We will show in this article that there is another sense
in which language can be considered in evolutionary terms. Firstly, we will argue that the complexity we
see in human languages is determined to a significant degree by the manner in which they are transmitted.
Secondly, we will show how the transmission of language is achieved using the mechanisms of language
learning and language production. These mechanisms impose constraints on transmission, such that lan-
guages can be said to undergo adaptation as a result of their transmission. This process is termed linguistic
evolution [14,15,25,26,34]. In short, language can properly be regarded as an evolutionary system.
The hypothesis that language should be understood in these evolutionary terms rests on the assump-

tion that languages code information that determines the manner in which they are processed by the
cognitive system. This assumption is intimately related to a central question in linguistics and cogni-
tive science: to what degree is language an expression of the genes? Section 2 focuses on this question
by first considering the position known as strong or Chomskyan nativism (see [29,72]). This position is
based on the hypothesis that the essential properties of languages we see are innately specified to a theo-
retically significant degree (e.g., [22,23]), and as such represents one extreme position on an unresolved
empirical question [32,76]. We will then briefly outline alternatives to this position which propose that
at least some of the hallmarks of language are learned through inductive generalisations from data. This
alternative standpoint opens up a set of fundamental questions relating to the question of how language
evolved in humans. We argue that, given this standpoint, linguistic evolution forms a significant part of
the explanation for the evolution of linguistic complexity.
Section 3 describes the interdisciplinary approach to evolutionary linguistics we adopt to develop and

test the theory of linguistic evolution. Our discussions will draw on concepts taken from fields such
as complex systems, computational learning, artificial life, and linguistics. We will then work toward
strengthening the view of language as an evolutionary system, developing our argument using two recent
computational models of linguistic evolution. Both models deal with the cultural evolution of composi-
tional structure, a hallmark of language and a test-case which demonstrates the explanatory potential of
our approach. In Section 4 we present a simple associative model of language learning (as presented in
[87]) which allows us to establish a link between a particular aspect of cultural transmission (a trans-
mission bottleneck) and the evolution of compositional structure. In Section 5 this model is extended
to consider the role that the biases of language learners play in this evolutionary process, and in par-
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ticular investigates the impact of psychologically-plausible learning biases on the evolutionary process.
Section 6 takes a complementary perspective, and analyses the process of learning in terms of induction
and compression according to a normative theory of induction called the minimum description length
principle [9,11,12].
The insights of these models will be used to refine the theory of linguistic evolution developed in Sec-

tion 7. Here, we consolidate the insights of the models and develop the argument for viewing language as
an evolutionary system. In broad terms, then, this article will demonstrate recent progress in understand-
ing language in evolutionary terms, and in particular, understanding language itself as an evolutionary
system. The overarching theme in this discussion will be the hypothesis that language adapts to aid its
own survival by evolving certain types of structural complexity. In order to understand this phenomenon
we need a theory detailing the novel medium of linguistic transmission, and the mechanisms that underly
this transmission.

2. Background: Explaining the complexity of language

Language is a system relating form and meaning. Individual languages achieve this relationship in
different, but tightly constrained ways. That is to say that variation exists across languages, but the object
of study for many linguists are the common structural hallmarks we see across the world’s languages.
Why do all languages share these properties? A widespread hypothesis is that language, like the visual
system, is an expression of the genes:

It is hard to avoid the conclusion that a part of the human biological endowment is a specialized ‘lan-
guage organ’, the faculty of language (FL). Its initial state is an expression of the genes, comparable
to the initial state of the human visual system, and it appears to be a common human possession to
close approximation [23, p. 85].

To support this view, we can note that children master complex features of language on the basis of
surprisingly little evidence. The argument from the poverty of the stimulus states that the knowledge
of language children attain is surprising precisely because it cannot be derived solely from information
made available by the environment (e.g., [21,29,76,98]). This view can be traced back to Plato (427BC–
347BC), who noted that humans come to know more than that suggested by the evidence they encounter,
with language being just one example of this general phenomenon.
If knowledge of language is in this sense innate, then why do languages exhibit so much variation?

The modern debate on the innateness of language attempts to resolve this problem by suggesting that the
framework for linguistic development is innate, while the linguistic environment merely serves to steer
an internally directed course of development:

[the environment] provides primary linguistic data that enable the linguistic system to develop, just as
it provides light and food that enable the visual and motor systems to develop [95, p. 523].

In this sense, languages themselves are not encoded entirely in the genes, but the fundamental, abstract
properties of language are. How can we gain an understanding of these innately specified hallmarks of
language? One possibility is that linguists, by conducting a thorough analysis of the world’s languages,
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can propose a set of descriptive statements which capture these hallmarks of language. For example, we
may identify properties common to all languages we encounter, properties that conform to a certain sta-
tistical distribution, or implicational hierarchies of properties that fit with known languages. Collectively,
such descriptive statements constitute a theory of language universals (e.g., [28,31,70]). Linguistic uni-
versals define the dimensions of variation in language. Modern linguistic theory rests on the assertion
that it is these dimensions of variation that are genetically determined.
As an explanatory framework this approach to explaining why language exhibits specific structural

characteristics is very powerful. One of its strengths is that, by coupling universal properties of language
tightly to a theory of innate constraints, our analysis of the structural hallmarks of language must centre
on a wholly psychological (i.e., cognitive, mentalistic, or internalist) explanation. As a consequence, we
can understand why languages have certain structural characteristics and not others by understanding
those parts of the human cognitive system relevant to language. In other words, our object of study has
been circumscribed to encompass a physical organ: the brain. As we have seen, this position is largely
based on the argument from the poverty of the stimulus. One outcome of this hypothesis is that children
do not learn language in the usual sense, but rather they acquire it as a result of the internally directed
processes of maturation. For example, Chomsky states that “it must be that the basic structure of language
is essentially uniform and is coming from inside, not from outside” [23, p. 93].
This claim is controversial, and will impact heavily on the discussion to come. Nevertheless, to char-

acterise the traditional position, we should note that language is often considered part of our biological
endowment, just like the visual system. The intuition is that one would not want to claim that we learn to
see, and in the same way, we should not claim that we learn speak.

2.1. Language learning under innate constraints

Linguistic nativism, at least in the extreme form presented above, is far from being universally ac-
cepted (for a good coverage of the debate, see [29,32,46]). An alternative to this hypothesis is that the
structure of language is, to some extent, learned by children: humans can arrive at a sophisticated knowl-
edge of language without the need to have hard-wired (genetically determined) expectations for all the
dimensions of linguistic variation. This is the view that we will adopt throughout this article. We as-
sume that, to some degree, language is learned through inductive generalisations from linguistic data,
and therefore deviate, as do many others, from Chomsky’s position that knowledge of language goes “far
beyond the presented primary linguistic data and is in no sense an ‘inductive generalisation’ from these
data” [21, p. 33].
To what degree is it true that language is learned through inductive generalisations? Frustratingly, there

is little concrete evidence either way. Linguistics lacks a rigorous account of which (if any) aspects of
language are acquired on the basis of innate constraints. General statements such as “linguistic structure is
much more complex than the average empiricist supposes” [97, p. 283], and “the attained grammar goes
orders of magnitude beyond the information provided by the input data” [98, p. 253] abound, and these
claims are to some extent backed up with specific examples designed to show how children’s knowledge
of language extends beyond what the data suggests (e.g., [3,30,48,56,57]). Nevertheless, many still argue
that the required information is in fact present in the linguistic data [75,76], and to claim that it is not is
“unfounded hyperbole” [75, p. 508].
It should be noted that, despite the debate being dominated by extremes, the issue is not one of deny-

ing that language has an innate biological basis. Only humans can acquire language, so any theory of
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language must consider an innateness hypothesis of some form. The real issue is the degree to which
language acquisition is a process of induction from data within constraints:

[. . .] our experience forms the basis for generalization and abstraction. So induction is the name of the
game. But it is also important to recognize, that induction is not unbridled or unconstrained. Indeed,
decades of work in machine learning makes abundantly clear that there is no such thing as a general
purpose learning algorithm that works equally well across domains. Induction may be the name of the
game, but constraints are the rules that we play by [38].

As for the degree to which these constraints are language-specific, and can rightfully be considered
genetically determined, the issue is an open empirical question:

I would also take it to be a matter for empirical investigation the extent to which it is necessary to at-
tribute certain properties of grammars to the emergence in the course of learning of ‘innate structures’,
on the one hand, or to the application of specific learning procedures to a body of linguistic data, on
the other [32, p. 11].

In the light of this debate, we make an assumption that will be carried through the remainder of the
article: if we deviate from the position that language acquisition in no sense involves inductive gen-
eralisations, then we must acknowledge that the linguistic environment must supply information. This
information impacts on how languages are represented and processed within the cognitive system—
linguistic data contains information about the structure of the mental grammar required to produce that
data. In other words, in addition to its more obvious communicative content, language encodes informa-
tion about the structure of language.

2.2. Towards an evolutionary explanation

The degree to which language is learned through a process of inductive generalisation has a profound
effect on the framework we use to explain why language has the structure that it does [14]. If induction
plays a role in determining knowledge of language, then environmental considerations must be taken
seriously; any linguistic competence acquired through learning will be determined to a significant degree
by the structure, or information, present in the environment in the form of linguistic data. The environ-
ment must be supplying information in order for induction to occur. We must therefore explain why the
linguistic environment is the way it is: how did this information, or linguistic structure, come to exist?
To address this issue we will argue for an evolutionary perspective, and seek to explain how, from a
non-linguistic environment, linguistic structure can develop through linguistic evolution. In short, this
view casts doubt on the view that the hallmarks of language are, as Chomsky claims, “coming from
inside, not from outside.” Necessarily, if inductive generalisations made from data contained in the en-
vironment determine the kind of linguistic structure embodied in language, then a wholly psychological
theory of linguistic structure must be inadequate—the environment, in the form of linguistic data, plays
a crucial role. How languages themselves can come to carry this information is the issue we turn to
next.
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3. Linguistic evolution: From theory to models

Linguistic evolution is the process by which languages themselves evolve as a result of their transmis-
sion (e.g., [14,24,25,34,49]). Unlike the innate communication systems of, for example, vervet monkeys
[20] and bees [96], human language is, as discussed above, learned, and therefore potentially undergoes
change as a consequence of its cultural transmission from one generation to another. The most obvious
example of this is language change, as witnessed on a historical time scale (e.g., [1,45,58])—for example,
the change from Old to modern English.
Linguistic evolution is an instance of the more general phenomenon of cultural evolution which fig-

ures in explanations of a number of human cognitive domains (e.g., [7,16,33,36,92]). It is not clear to
what extent linguistic evolution mirrors the processes of cultural evolution in the wider sense. Indeed,
it is possible that language-specific constraints govern the processing and transmission of language.
For this reason, we will begin by assuming that linguistic evolution may differ from other instances
of cultural evolution. Our starting position is therefore conservative: we do not set out to explain a
general theory of cultural evolution but rather seek to develop a theory which is specifically linguis-
tic.
The process of linguistic evolution has been repeatedly proposed as a source of linguistic complexity

(e.g., [24,34,49]). Deacon, for example, states:

Grammatical universals exist, but I want to suggest that their existence does not imply that they are
prefigured in the brain like frozen evolutionary accidents [. . .] they have emerged spontaneously and
independently in each evolving language, in response to universal biases in the selection processes
affecting language transmission [34, pp. 115–116].

Deacon’s position could be taken as an extreme—it may not be the case that all universals can be
described in this way. The key point in the present discussion is that linguistic evolution occurs as
a result of language being transmitted from one generation to another, and that this linguistic evo-
lution may offer an explanation for linguistic universals. In order to provide a firmer footing for the
discussion that follows, we now turn to a more formal characterisation of the process of linguistic evolu-
tion.

3.1. Iterated learning: A model of language transmission

Language is transmitted culturally through, firstly, the production of utterances by one generation and,
secondly, the induction of a grammar by the next generation, based on these utterances. This cycle, of
repeated production and induction, is crucial to understanding the diachronic process of language change
(as argued by, e.g., [1,45]). Several models have demonstrated how phenomena of language change can
be understood in terms of this characterisation of linguistic transmission [27,42,68]. Such models are de-
signed to inform our understanding of how full-blown human languages undergo structural change over
time—for example, these models could inform an enquiry into the morphological change that charac-
terised the history of, say, English (as in [42]).
Of more importance here are studies that focus specifically on the cultural evolution of linguistic

complexity from non-linguistic communication systems [4,9,51,52,87]. In principle, the same general
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mechanisms which explain the change in languages in recent times should also offer an account of change
in the linguistic system at a greater time-depth—in other words, uniform processes acting on languages
should be capable of explaining both language evolution (a qualitative shift from a non-linguistic to a
linguistic system), as well as language change (subsequent quantitative shifts).3
Much of the work focusing on the emergence of linguistic systems through linguistic evolution has

been consolidated under a single computational modelling framework termed the Iterated Learning
Model [9,51,87,89]. In this article we will use particular examples of the Iterated Learning Model to
test aspects of the theory of linguistic evolution.
An iterated learning model consists of a model of a population composed of a number of agents

(simulated individuals), typically organised into generations. Language is transmitted from generation
to generation within this population. For a language to be transmitted from one agent to another, it
must be externalized by one agent (through language production), and then learned by another (through
language acquisition). An agent therefore must have the ability to learn from examples of language use.
Learning results in the induction of a hypothesis on the basis of data. This hypothesis represents the
agent’s knowledge of language. Using the hypothesis, an agent also has the ability to produce examples
of language use itself. Agents, therefore, have the ability to interrogate an induced hypothesis to yield
examples of language use. Within this general setting, we can explore how the process of linguistic
evolution is related to the mechanisms of hypothesis induction (language acquisition), and hypothesis
interrogation (language production).
In the introduction to this article we described how human language signified a major transition in

evolution as it represents a novel medium for information transmission, both in the sense intended by
Maynard Smith and Szathmáry [63]—language transmits information about non-linguistic culture—and
in the sense that language encodes information about its own structure. The mechanisms that underly and
influence the transmission of this latter type of information are the mechanisms of language acquisition
and language production that we describe here.
Within the framework of the Iterated Learning Model, various treatments of population size, popu-

lation turnover, and social network structure are possible.4 Throughout this article we will consider the
simplest case, where each generation contains a single agent. The first agent in the simulation, Agent 1, is
initialised with knowledge of language h1, the precise nature of which will depend on the learning model
used. This hypothesis will represent knowledge of some language Lh1 . Agent 1 then produces some set
of utterances L′

h1
by interrogating the hypothesis h1. This newly constructed set of utterances will be a

subset of the language Lh1 . These utterances are then passed to the next agent to learn from, the first
agent playing no further part in the simulation. This process is illustrated in Fig. 1. The important point is
that, under certain circumstances, the language will change from one generation to another; it will evolve
and undergo adaptation.

3 See Newmeyer [67] for discussion of the uniformitarian dogma in linguistics. The approach to linguistic evolution we
describe here rejects uniformity of state, but accepts uniformity of process. In other words, we assume that the form of languages
has qualitatively changed although the mechanisms of cultural evolution driving this change have remained constant.
4 Indeed, data from language genesis, change and death suggest that such population factors have significant impact on the
linguistic system—see Smith and Hurford [88] for a pilot study applying iterated learning to an investigation of such issues.
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Fig. 1. The iterated learning model. The first agent has knowledge of language represented by a hypothesis h1. This hypothesis
itself represents a language Lh1 . Some subset of this mapping, L

′
h1
, is externalized as linguistic performance for the next agent

to learn from. The process of learning results in a hypothesis h2. The process is then repeated, generation after generation.

3.2. The language model

Before proceeding to a fully-specified Iterated LearningModel we must introduce our language model.
The particular model we introduce will figure in both models featured later in the paper. The discus-
sion surrounding the language model will also allow us to define the feature of language we will be
investigating throughout this article. This is a property of language—a linguistic universal—termed com-
positionality.
A model of language needs to capture the fact that a language is a particular relationship between

sounds and meaning. The level of abstraction we will aim for captures the property that language is map-
ping from a “characteristic kind of semantic or pragmatic function onto a characteristic kind of symbol
sequence” [73, p. 713]. When we refer to a model of language, we will be referring to a set of pos-
sible relationships between, on the one hand, entities representing meanings, and on the other, entities
representing signals. Throughout this article we will consider meanings as multi-dimensional feature
structures, and signals as sequences of symbols.
Meanings are defined as feature vectors representing points in a meaning space. Meaning spaces will

be defined by two parameters, F and V . The parameter F defines the dimensionality of the meaning
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space—the number of features each meaning has. The parameter V defines how many values each of
these features can accommodate.5 For example, a meaning space M specified by F = 2 and V = 2
would represent the set:

M=
{
(1,1), (1,2), (2,1), (2,2)

}
.

Notice that meanings represent structured objects of a fixed length, where the values associated with
each feature are drawn from a set. We will further assume, in the interest of simplicity, that no graded
notion of similarity applies within feature values—feature values are unordered, and the only notion of
similarity is one of identity.
Signals are defined as strings of symbols drawn from some alphabet Σ . Signals can be of variable

length, from length 1 up to some maximum lmax. For example a signal space S , defined by lmax = 2 and
Σ = {a,b}, would be:

S = {a,b,aa,ab,ba,bb}.
Again, we assume that no notion of similarity other than identity applies to members of Σ—for ex-

ample, a is no more similar to b than it is to z.
We now have a precise formulation of the meanings and signals. Of great importance to following

discussion will be the kinds of structural relationships which can exist between meanings and signals. It
is the nature of the relationship between meanings and signals that makes human language so distinctive.
Accordingly, it is crucial to be aware that the model of meanings and signals we have introduced will
restrict the set of mappings that are possible. By building an abstract model of language we are necessar-
ily simplifying the range of linguistic phenomenon we seek to explain. For example, recursive structures
found in language cannot occur within this model of language (see Kirby [52] for a model which consid-
ers this aspect of language. However, as it stands, the model of language presented above can capture a
key feature of language we will be focusing on: compositionality.
Compositionality is a property of the mapping between meanings and signals.6 A compositional map-

ping is one where the meaning of a signal is some function of the meaning of its parts and the way
in which they are combined (e.g., [53,100]). Such a mapping is possible given the model of language
developed so far. Consider the language Lcompositional:

Lcompositional =
{〈

{1,1},ac
〉
,
〈
{1,2},ad

〉
,
〈
{2,1},bc

〉
,
〈
{2,2},bd

〉}
.

This language has compositional structure due to the fact that each meaning is mapped to a signal
such that parts of the signal (some sub-string) correspond to parts of the meaning (a feature value). The
string-initial symbol a, for example, represents feature value 1 for the first feature.
An instance of a language with no compositional structure whatsoever is also of interest. We will

term such relationships holistic languages:7 signals map to meanings in such a way that no systematic

5 Specifying a meaning space using just two parameters is of no intrinsic importance; it serves only to simplify notation. We
could just as well define a meaning space using the parameter F , along with an extra F V parameters detailing the number of
values each individual feature can take.
6 Contra a frequently-stated view, it is not a property of meanings alone, nor indeed a property of signals alone.
7 Strictly speaking, we should use the term holistic communication system since one of the defining features of language is
compositionality. Nevertheless, we will continue to abuse the term language in this way in the interest of convenience.
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relationship exists between parts of the signal and parts of the meaning, as in Lholistic:
Lholistic =

{〈
{1,1},ppld

〉
,
〈
{1,2},esox

〉〈
{2,1},q

〉
,
〈
{2,2},dr

〉}
.

A holistic language is usually constructed by pairing each meaning with a random signal, and conse-
quently holistic languages may also be referred to as random languages in the discussion that follows.
The morphosyntax of language exhibits a high degree of compositionality. For example, the relation-

ship between the string John walked and its meaning is not completely arbitrary. It is made up of two
components: a noun (John) and a verb (walked). The verb is also made up of two components: a stem
and a past-tense ending. The meaning of John walked is thus a function of the meaning of its parts and
the way in which they are combined. The compositional structure of language makes the interpretation
of previously-unencountered utterances possible—knowing the meaning of the basic elements and the
effects associated with combining them enables a user of a compositional system to deduce the meaning
of an infinite set of complex utterances.

3.3. How iterated learning models inform theory and explanation

Given the model of language described above we can begin to describe in more depth how iterated
learning models can be used to explore theories of linguistic evolution.
A model of language defines a space which contains all the possible languages (relationships between

meanings and signals) that the model can accommodate. We will refer to this space as the language
space. Each simulation run of an Iterated Learning Model represents a trajectory through the language
space. As the language is transmitted and evolves the system may enter different regions of the language
space. Iterated learning models are informative when, irrespective of the initial language, certain regions
of the state space represent attractors—regions of the space that the system will always settle in. If an
iterated learning model consistently results in trajectories which focus on an attractor, the model will
have shown how the process of linguistic evolution mediates between a set of initial conditions and a
final region of the state space, and therefore by implication, some structural property of language we are
interested in.
For example, Fig. 2 depicts two sets of experiments under different conditions—say, different assump-

tions regarding the linguistic capacities of the simulated individuals. In both conditions we see a pair of

Fig. 2. Trajectories through a language space, given two different sets of experimental conditions.
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trajectories with an initial starting position of a random (holistic) language. The language space, rep-
resented schematically, has two regions of interest: a large region representing random languages, and
a smaller region of languages which have the property of compositionality, a key feature of linguistic
structure. Under experimental condition 1 (the left-hand diagram in Fig. 2) the compositional region of
the language space is not visited. In contrast, under condition 2 we see consistent evolution from random
initial languages to compositional languages.
Given such a series of outcomes of the model, we can begin to identify which properties of the sim-

ulated agents (in our example), in combination with the process of linguistic evolution, leads to the
evolution of compositionality: linguistic structure develops as a result of how the language is transmitted.
By systematically investigating different experimental conditions pertaining to the capacities of simulated
agents, the environment of cultural transmission and so on, we can begin to refine our understanding of
the characteristics of this evolutionary process.
Iterated learning models will not necessarily result in perfectly stable states. When we refer to the

stability of a state of the model, with respect to a linguistic property of interest, we typically refer to
Liapounov stability, also known as “start near, stay near stability” (e.g., [40, p. 27]). Our characterisation
of stability allows the possibility that the model may enter a specific region of the language space and
remain within it, even though no particular language can be said to be stable. For example, the sub-
space representing compositional languages may be a stable region for a certain model. Similarly, natural
languages we observe are stable in the sense that they always conform to linguistic universals, although
they undoubtedly undergo change over time.

3.4. Contrasting perspectives on the mechanisms driving linguistic evolution

We have discussed how an iterated learning model can be employed to shed light on an explanation of
linguistic evolution, introduced the key components of the iterated learning model, and focused on how
the language model can accommodate the linguistic phenomenon of compositionality. The next step is to
focus on the agents within the iterated learning model, as properties of the agents, in interaction with the
mediating cultural dynamic, determine how languages themselves evolve.
Agents are composed of a learning algorithm and a production algorithm. We will present two models

which focus on two sources of insight into the process of linguistic evolution, and which take their
inspiration from two complementary conceptual frameworks. First of all, we present an associative model
of learning. This model is useful because it allows parallels to be drawn with known psychological
processes of language acquisition, therefore providing insights into how such processes drive linguistic
evolution. The second model we present views the process of learning from a perspective of general
considerations of data compression and Bayesian inference. In addition to providing a theoretically well-
grounded approach to induction, the second model facilitates an investigation into the role of invention
and innovation in linguistic evolution.
These two contrasting approaches are not mutually exclusive. Indeed, part of the motivation for pur-

suing these lines of enquiry is to build a solid picture of information transmission through language
transmission, based on formal notions of learning as compression while at the same time maintaining
clear parallels with what we know about language processing in humans. This pluralistic approach is
motivated by the fact that “some of the most important formal properties of a theory are found by con-
trast, and not by analysis” [39, p. 30]. In this sense, we aim to investigate linguistic evolution through
iterated learning in the light of models which approach the problem from complementary perspectives.
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4. The cultural evolution of linguistic structure: The role of the transmission bottleneck

In Section 4.1 we develop a simple associative model of language acquisition, which will be used to
investigate two factors. Firstly, in Section 4.2, we will use the model to demonstrate a basic result linking
the cultural transmission of language with an aspect of linguistic structure, namely compositionality. This
constitutes one of the core findings of research on linguistic evolution. Secondly, in Section 5, we will
use this model to investigate the role of learner biases in the evolution of compositional structure.

4.1. An associative matrix model of learning and production

As discussed in Section 3.2, languages can be viewed as a system mapping between a space of mean-
ings and a space of signals. One of the simplest ways to model a linguistic agent capable of manipulating
a system of meaning-signal mappings is to use an association matrix—a matrix specifying association
strengths between meanings and signals, where entry aij in the matrix gives the strength of association
between meaning i and signal j . An agent’s production and reception behaviour is determined by associ-
ation strengths in that agent’s matrix, and learning involves adjusting association strengths according to
some learning procedure. This approach is frequently used to study the evolution of signalling systems,
where meanings and signals are unstructured, atomic entities (see, e.g., [44,71,84,86,90]).
A minimal elaboration to this basic scheme permits such a model to be used to model the learning

of associations between structured meanings and structured signals [87]. A linguistic agent is defined by
an association matrix A. Entries in A give the strength of association between both partial and complete
meanings and signals (as defined below). As in the simpler model, production and reception behaviour
are determined by the association matrix, and learning involves adjusting association strengths.

4.1.1. Representation
As summarised in Section 3.2, meanings are vectors in an F -dimensional space where each dimension

has V values. Components of meanings are vectors such that each feature of a component has either the
same value as the meaning in question, or a wildcard. More formally, if cm is a component of meaning
m, then the value of the j th feature of cm is:

(1)cm[j ] =
{

m[j ] for specified features,
∗ for unspecified features

where ∗ represents a wildcard. Similarly, components of signals of length l are (possibly partially speci-
fied) strings of length l. We impose the additional constraint that a component must have a minimum of
one specified position—cm

[
j
]
#= ∗ for all j .

Each row of an A matrix corresponds to a component of a meaning, and there is a single row in A

for each component of every possible meaning. Similarly, each column in A corresponds to a component
of a signal. The entry aij in matrix A therefore gives the strength of association between a meaning
component i and a signal component j .
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4.1.2. Learning
Prior to learning, all entries in A have a value of 0. During a learning event, a learner observes a

meaning-signal pair 〈m,s〉.8 The meaning m will specifies a set of meaning components Cm and the
signal s specifies a set of signal components Cs . The learner then updates its A matrix according to the
learning procedure:

(2)"aij =






α if i ∈ Cm and j ∈ Cs,
β if i ∈ Cm and j /∈ Cs,
γ if i /∈ Cm and j ∈ Cs,
δ if i /∈ Cm and j /∈ Cs .

This is exactly equivalent to the learning procedure from Smith [86], but with respect to components of
meanings and signals, rather than unanalysed meanings and signals. The key point is that assignment of
values to α, β , γ and δ specifies a particular way of learning, or updating association strengths. Different
assignments yielding a range of possible ways of learning, an issue we will turn to in Section 5.

4.1.3. Production and reception
An analysis of a meaning or signal is an ordered set of components which fully specifies that meaning

or signal. More formally, an analysis of a meaning m is a set of N components {c1m, c2m, . . . , cN
m } that

satisfies two conditions:

(1) If ci
m[j ] = ∗, ck

m[j ] #= ∗ for some choice of k #= i,
(2) If ci

m[j ] #= ∗, ck
m[j ] = ∗ for any choice of k #= i.

The first condition states that an analysis may not consist of a set of components which all leave a
particular feature unspecified—an analysis fully specifies a meaning. The second states that an analysis
may not consist of a set of components where more than one component specifies the value of a particular
feature—analyses do not contain redundant components. Valid analyses of signals are similarly defined.
During the process of producing utterances, agents are prompted with a meaning and required to

produce a meaning-signal pair. In order to retrieve a signal s based on an input meaningm every possible
signal sj ∈ S is evaluated with respect to m. For each of these possible meaning-signal pairs 〈m,sj 〉,
every possible analysis of m is evaluated with respect to every possible analysis of sj . The evaluation
of a meaning analysis-signal analysis pair yields a score g, as defined by Eq. (3). The meaning-signal
pair which yields the analysis pair with the highest g is returned as the agent’s production for the given
meaning. The score for a meaning analysis (which consists of a set of meaning components) paired with
a signal analysis (a set of signal components) is given by:

(3)g
({

c1m, c2m, . . . , cN
m

}
,
{
c1s , c

2
s , . . . , c

N
s

})
=

N∑

i=1
ω

(
ci
m

)
· aci

m,ci
s
,

where N is the number of components in the analysis of meaning and signal, aci
m,ci

s
gives the strength of

the association between the ith component of the meaning analysis and the ith component of the signal
analysis and ω(x) is a weighting function which gives the non-wildcard proportion of x.

8 We therefore assume that learners have the capacity to identify the intended meaning of an utterance, as well as the signal
produced for that meaning. This is sometimes called the assumption of explicit meaning transfer [83].
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4.2. Transmission bottlenecks and the pressure to generalise

Using the extended A matrix model outlined above, we will consider the impact of a transmission
bottleneck on a population’s communication system.
The transmission bottleneck reflects the fact that in nature languages cannot be transmitted in totality

from one individual to another. Languages are capable of expressing an infinite range of concepts, and
any member of this infinite array of expressions is interpretable in turn. Acquiring a language therefore
entails the acquisition of a system for producing and understanding such an infinite set of meaningful
utterances. However, the system for generating this infinite set of utterances must be acquired from a
finite set of data—it is necessarily true that language learners do not see all the sentences of a language
during the language learning process, because this would take an infinite amount of time. This transmis-
sion bottleneck is one aspect of the poverty of the stimulus problem, which is typically advanced as an
argument suggesting that linguistic structure must be largely prespecified in language learners.
We will test the consequences of the transmission bottleneck using an implementation of the Iterated

Learning Model with the processes of language learning and production modelled using the associative
matrix model outlined above. Recall that in an Iterated Learning Model, language is transmitted between
generations via production and learning. Learners observe e meaning-signal pairs produced by the indi-
vidual at the previous generation. If these e observations are selected so that the learner observes every
meaning from the space of possible meanings at least once, paired with its associated signal, then the
learner observes the complete language of the previous generation. We will call this the no bottleneck
case—note that this no bottleneck condition cannot apply in the case of natural language. In contrast,
if the meanings expressed in these e observations are selected purely at random, then the learner may
not observe the complete language of the previous generation—they may only observe a subset of that
language, and when called upon to produce they may be required to produce a signal for a meaning
which they themselves never observed expressed. We will call this (more realistic case) the bottleneck
condition.
We will begin by considering a single learning rule, and investigating the effect of a transmission bot-

tleneck, before returning to the issue of learning strategies in Section 5. We will begin by considering the
associative learning rule defined by α = 1, β = −1, γ = −1, δ = 0—connection strengths between mean-
ing and signal components which occur together are strengthened, and connection strengths between
meaning and signal components which differ in their occurrence are decreased (β = −1, γ = −1).9 The
measures of interest is the compositionality of the emergent languages. Our measure of compositionality
is given in Appendix A—this ranges from ≈ 0 for a holistic system, to ≈ 1 for a compositional language.
Fig. 3 shows compositionality over time, in the two experimental conditions. The graphs plot the

mean and standard deviation of compositionality, averaged over 100 runs in each condition, against time
in generations, with runs allowed to proceed until a stable system emerges.10
As can be seen from Fig. 3, the presence or absence of a transmission bottleneck has a significant

impact on the population’s language. In the initial generation in both experimental conditions, composi-
tionality is at baseline levels, reflecting the random nature of the initial languages—the initial generation
of each population produces a random set of utterances, due to initial association strengths of 0. In the

9 Other simulation parameters: F = 3, V = 4, lmax = 3, |Σ | = 8, e = 100 in the no bottleneck condition, e = 32 in the
bottleneck condition.
10 Mean and standard deviation of 100 runs are plotted for all results in Sections 4 and 5.
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Fig. 3. The impact of a transmission bottleneck on the structure of language.

no bottleneck condition compositionality remains at base-line levels over multiple generations of cul-
tural transmission. In contrast, in the bottleneck condition a highly compositional language evolves—all
simulation runs converge on languages with compositionality of approximately 1.
The results for the no bottleneck condition reflect the persistence of the initial, holistic system of

meaning-signal mappings—compositional mappings do not emerge when there is no bottleneck on trans-
mission. In the bottleneck condition, this is not the case—a system of meaning-signal mappings evolves
in which the structure of a meaning is transparently reflected in the structure of the signal associated with
that meaning. Table 1 shows fragments of languages evolving during a particular simulation run—an ini-
tial holistic language, and a final compositional language. In short, compositionally-structured languages
evolve through cultural processes, but only when there is a bottleneck on transmission. Why is this?
When there is no bottleneck on transmission, learners observe the complete language of the previous

generation. This can simply be memorised. The system embodied in the random meaning-signal pairs
produced by the initial generation will be a holistic one, and this system will be preserved over time.
However, holistic mappings cannot persist in the presence of a bottleneck. The meaning-signal pairs

of a holistic language are arbitrary with respect to structure—the structure of a meaning is in no way
reflected in the structure its associated signal. As such, the meaning-signal pairs of a holistic language
must be observed if they are to be reproduced. When a learner only observes a subset of a holistic
language then certain meaning-signal pairs will not be observed and therefore will not be preserved—the
learner, when called upon to produce, may produce some other signal for that meaning, resulting in a
change in the language—holistic languages are not stable when there is a bottleneck on transmission.
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Table 1
Fragments of initial and final languages from one simulation run

Meaning Signal in initial language Signal in final language
(3, 3, 3) db def
(3, 3, 2) cfc ded
(3, 2, 3) cfh daf
(3, 2, 2) deg dad
(2, 3, 3) fbg fef
(2, 3, 2) gae fed
(2, 2, 3) chg faf
(2, 2, 2) cbc fad
(1, 3, 3) cgg gef

Compositionality of initial language: −0.025. Compositionality of final lan-
guage: 0.991.

In contrast, compositional languages are generalisable, due to their structure. In a compositional lan-
guage there is a regular relationship between feature values and parts of signal—for example, as can be
seen Table 1 above, in one compositional language from one simulation run, value 1 for feature 1 maps
to string-initial g, value 2 for feature 2 maps to string-medial a, and value 2 for feature 3 maps to string-
final d. This structure in the mapping allows learners to generalise from observed meaning-signal pairs in
order to produce the appropriate signal for meanings which they were not exposed to during learning. For
example, the regularities sketched out above allow us to (correctly) predict that the signal for meaning
(1,2,2) should be gad, even though meaning (1,2,2) is not included in our sample of this language.
The potential of compositional languages to be generalised allows such languages to remain relatively

stable over repeated episodes of cultural transmission, even when the learner only observes a subset of
the language of the previous generation. Holistic languages cannot be stable under such conditions. The
transmission bottleneck therefore introduces a pressure for languages to be generalisable. Over time,
languages adapts to this pressure, eventually becoming highly compositional, highly generalisable and
consequently highly stable.
This, then, constitutes a basic result for investigations into the cultural evolution of language—a bottle-

neck on cultural transmission introduces pressure for language to be generalisable, and language adapts
to this pressure over time. This result has been demonstrated using a fairly wide range of models of lan-
guage, language learning and iterated learning—see, e.g., [4,10,50,52,87]. Compositionality represents
an adaptation, by language, to the circumstances of its transmission. This explanation linking a feature
of linguistic transmission (the transmission bottleneck) with a particular aspect of linguistic structure
(compositionality) therefore constitutes an example of how certain linguistic universals can arise as a
consequence of linguistic evolution, rather than being prespecified in the genes.

5. The cultural evolution of linguistic structure: The role of the language learner

The results outlined in the previous section were for a particular learning rule—a particular system of
altering association strengths in a matrix based on observed meaning-signal pairs, given by a particular
assignment of values to the parameters α, β , γ and δ. There are obviously alternative assignments,
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leading to alternative learning strategies. To what extent is the result linking the transmission bottleneck
with the compositionality of the evolved language dependent on this particular learning strategy?
A brief survey of the literature suggests that this result has generality beyond the particular learn-

ing model used here. Various other, often significantly different, learning models yield the same basic
result—to name but a few, heuristic driven induction of context-free grammars [52], exemplar-based
learning [4], and MDL-based induction of finite state transducers ([10] and see Section 6). However,
the learning strategies implemented in this apparently disparate selection of models may in fact share
some fundamental properties in common, and these shared properties may be crucial to the evolution of
compositional structure.
The associative matrix model of learning allows us to make a systematic investigation of alternate

learning strategies, and their consequences for the evolution of linguistic systems.

5.1. Learning strategies supporting generalisation

The main result from the previous section was that the transmission bottleneck introduces a pressure
to generalise, and that the evolving linguistic system adapts to this pressure. A necessary precondition for
this is that the language learners are capable of generalising—capable of identifying, extracting and ex-
ploiting the regularities in a compositional language. Given that this proves to be the case, the associative
matrix learning according to the rule given above must be capable of generalisation, and this capacity for
generalisation must correspond to the particular values used for α, β , γ and δ. By pinpointing the locus
of this capacity to generalise, we can switch it on or off, and verify that it is in fact a prerequisite for the
evolution of compositional structure.
Details of the process of working out learning bias with respect to generalisation are necessarily some-

what involved, and we would refer the interested reader to Smith [85] for details. Briefly: the ability of
an associative matrix learner to generalise depends on the relationship between the values assigned to
learning rule parameters α and δ. This relationship determines the learner’s preference for using com-
ponential analyses—for producing meaning-signal pairs by associating parts of meaning (feature values
or collections of feature values) with parts of signal, rather than atomistically associating unanalysed
meanings with an unanalysed signals. The capacity to extract and use componential analyses is the basis
of the capacity to generalise.
To illustrate this, let us return to the example compositional language given in Table 1. As discussed

above, this language exhibits regularities: value 1 for feature 1 maps to string-initial g, value 2 for feature
2 maps to string-medial a, and value 2 for feature 3 maps to string-final d. Identifying these regularities
corresponds to making a componential analysis of the system of the meaning-signal mappings, and allows
us to generalise to the unseen meaning (1,2,2), and others.
In contrast to making such a componential analysis, we could simply memorise the associations be-

tween complete meanings and complete signals embodied in the fragment of compositional language
given in Table 1—meaning (3,3,3) maps to signal def, meaning (3,3,2) maps to ded, and so on. This is
the atomistic approach. In this case, due to our failure to make a componential analysis, we cannot gener-
alise to the signal associated with unseen meanings such as (1,2,2)—although the data we have observed
has structure, failure to analyse this data componentially means that generalisation is impossible.
Whether or not a learner takes the atomistic approach, the componential approach, or alternates be-

tween the two, depends on the relationship between α and δ in the learning rule used by that learner.
Briefly:
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α > δ: Preference for the componential analysis. This gives the capacity to generalise.
α = δ: Neutral between the componential and atomistic approaches. This leads to inability to generalise

reliably—while the componential approach may be used on one occasion to allow a generali-
sation to be made, on another occasion the atomistic method may be used, leading to failure to
generalise.

α < δ: Preference for the atomistic analysis. This leads to the inability to generalise.

α > δ is therefore a requirement which must be in place if a learner is capable of generalising, and we
should expect that this learner capacity is required if compositional languages are to evolve as shown in
the previous section. Note, however, that this capacity for generalisation does not guarantee the emer-
gence of compositional structure—as shown in the previous section, even given a learner capable of
generalising, compositionality will not emerge if there is no bottleneck on transmission. Further note that
the preference for the componential analysis resulting from α > δ does not mean that this approach will
be used if the data does not contain regularities.
What happens over time in an Iterated Learning scenario, where learners do not have the capacity to

generalise? Fig. 4 shows the results of simulations for two learning rules:

• The standard rule, which supports generalisation: α = 1, β = −1, γ = −1, δ = 0. This was the rule
used in the previous section.

• A modified variant of this rule, incapable of reliably generalising: α = 1, β = −1, γ = −1, δ = 1.

Fig. 4. The importance of the capacity to generalise.
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For both sets of results in Fig. 4 there is a bottleneck acting on transmission.
As shown in Fig. 4, when learners do not have the capacity to generalise we no longer see the evolution

of compositional languages—compositionality remains at random levels over time when agents learn
according to such rules, in spite of the pressure to generalise introduced by the transmission bottleneck.
This is in contrast to the behaviour when learners have the capacity to generalise arising from α > δ,
also shown in Fig. 4 for comparison. In other words, a learner capacity to generalise is, as expected, a
prerequisite for the evolution of compositional structure through cultural processes.

5.2. Learning strategies supporting communicative function

Up to this point we have only considered the structure of the evolving languages, and demonstrated
a link between the transmission bottleneck and the evolution of compositional structure. In a sense,
compositionality is functional from the point of view of languages themselves—compositionality allows
a language or a subregion of a language to survive repeated passage through the transmission bottleneck.
We have said nothing about an alternative notion of functionality—the functionality that a language
provides to users of that language.
There are several ways in which language could be useful to language users. It could be that language

is useful in as much as it allows language users to communicate with other language users—this is the
type of functionality which, for example, Pinker and Bloom [73] suggest is responsible for the biological
evolution of the human capacity for language. An alternative function of language could be the extent
to which it allows language users to signal their social identity, so as to affiliate themselves with cer-
tain social groups and dissociate themselves from others. This proposed function of language, and the
associated notions of prestige, covert prestige, and acts of identity, forms the basis of much research in
sociolinguistics (e.g., [54,94]).
Could functionality of this sort could also drive the evolution of linguistic systems? In the general case,

Boyd and Richerson [7] argue that any culturally transmitted system can evolve under “natural selection
of cultural variants”, such that variants of cultural traits which maximise the probability of an individual
surviving long enough to transmit their trait culturally and/or reproducing disproportionately frequently
and transmitting their variant to their offspring, will come to dominate in a population. Boyd and Richer-
son provide a number of domains in which empirical evidence suggests that this kind of evolution might
be observed, as do Mesoudi et al. [66]. Dealing specifically with language, the models of Martin Nowak
and colleagues (see [69] for review) reflect the assumption that reproductive fecundity impacts on the
likelihood of individual’s linguistic system being culturally transmitted. Kirby [49] examines in detail
how linguistic function can affect linguistic structure through cultural processes, natural selection, and
the interaction between culture and biological evolution.
In the results outlined in Section 4, a consideration of communicative function played no role in

the evolution of compositional languages—compositionality represents an adaptation by the language
itself to the pressure for generalizability introduced by the transmission bottleneck. It might also be the
case that compositionality proves to be functional from the perspective of language users. For example,
the relative stability across generations of a compositional language, even in the face of a transmission
bottleneck, may be useful for language users. As such, considerations of communicative function could
play a role in driving the evolution of compositionality, assuming that a bottleneck is present and that
the capacity to generalise is in place and so on. However, there is no need to appeal to this notion of
functionality to explain the cultural evolution of compositional structure—compositionality evolves in
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response to the pressure introduced by the transmission bottleneck, and it is therefore unnecessary to
invoke an explanation which appeals to the combination of a transmission bottleneck plus a pressure for
communication.
However, we have not yet addressed the functionality of the compositional systems which evolve

under the pressure arising from the transmission bottleneck. It could be that these languages are compo-
sitional in structure but useless in terms of communication, in which case there may indeed be a role for
communicative function to play in our explanation.
Our measure of communicative accuracy is given in Appendix A. Informally, communicative accu-

racy between two individuals is the probability, averaged over all meanings, of one of those individuals
producing a signal for a given meaning, and the other individual interpreting the received signal as con-
veying the same meaning that the speaker intended it to. This evaluates to 1 for communicatively optimal
systems, and 1/|V F | for a random system. For the results presented here, communicative accuracy is
measured across generations—it is an evaluation of the probability with which the individual from gen-
erations n and n + 1 will successfully communicate.11 A similar measure to the one used here is often
applied to an evaluation of communicative accuracy within generations, where each generation consists
of multiple individuals (see, e.g., [44,71,86]). A within-generation measure of communicative accuracy,
where an individual’s ability to communicate with itself using their signalling system, yields qualitatively
similar results to those given here using the across-generation measure.
Fig. 5 shows communicative accuracy over time, given the standard learning rule used in Section 4

(α = 1, β = −1, γ = −1, δ = 0), in the bottleneck and no bottleneck conditions. In both cases, systems
which are optimal for communication emerge and remain stable. This reflects the convergence of a con-
ventionalised meaning-signal mapping which is passed down intact from generation to generation, even
in the presence of a transmission bottleneck. Note that the systems in the two experimental conditions are
structurally rather different—as demonstrated earlier, they differ in their degree of compositionality—but
they both perform optimally in terms of communicative function. This is despite the fact that there is no
pressure for agents to communicate—individuals are not rewarded for more successful communication,
and individuals do not take communicative function into account during learning.
What, then, drives the evolution of these optimal communication systems? The explanation must re-

side in the process of language learning—by a similar method to that used in the previous section, we
can identify and experimentally vary the learning bias which leads to the evolution of optimal communi-
cation.12
It is worth considering the space of possible systems of meaning-signal mappings with a view to their

communicative function. Meaning-signal mappings can embody many-to-one mappings (a) (Table 2),
one-to-one mappings (b), or one-to-many mappings (c), regardless of whether we consider the system at
the level of mappings between complete complex meanings and complete signals, or between particular
feature values and signal substrings.
Many-to-one mappings, where several distinct meanings (or subparts of meaning) map to a single

signal are suboptimal in terms of communication, because the intended meaning of the ambiguous sig-
nal cannot be reliably retrieved. The optimal communication systems which evolve in the simulations
illustrated in Fig. 5, as we might expect, do not contain many-to-one mappings.

11 Note, therefore, that an evaluation of communicative accuracy at the initial generation of the population is impossible, as
there is no preceding generation to communicate with.
12 We would refer the reader to [84] for a similar analysis for the case of unstructured signalling systems
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Fig. 5. Evolution of optimal communication systems, regardless of presence or absence of a transmission bottleneck.

Table 2
Various types of meaning-signal mapping

many-to-one one-to-one one-to-many

w
hole–w

hole

(3,2,1)

(3,3,3) def

(1,1,1)

(3,3,3) def

esox

(3,3,3) def

ef

part–part

(∗,2,∗)

(3,∗,∗) d∗∗

(∗,1,1)

(3,∗,∗) d∗∗

∗∗ox

(3,∗,∗) d∗∗

ef

The holistic languages which evolve in the absence of a transmission bottleneck, the systems avoid
many-to-one mappings at the level of whole meanings and whole signals—in no case is there a complete
meaning which maps to the same complete signal as another complete meaning. For example, if meaning
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(1,2,3) maps to signal cbb then no other meanings map to the signal cbb. There is no prohibition on
distinct feature values appearing to co-occur with particular signal substrings, as such part-part mappings
are not exploited by learners learning a holistic system.
In contrast, the compositional systems which evolve in the presence of a transmission bottleneck the

systems avoid many-to-one mappings at the level of individual features values and signal substrings—no
two values for a given feature map to the same signal substring. For example, in the compositional lan-
guage in Table 1, feature 1 value 3 maps to string-initial d, and no other value for any other feature maps
to string initial d. A consequence of the absence of many-to-one mappings at this level, in combination
with the compositionality of the mapping, is the absence of many-to-one mappings at the level of whole
meanings and whole signals.
One-to-one and one-to-many mappings are unproblematic from the point of view of communication—

in both cases the intended meaning can be retrieved from the observed signal. We might therefore expect
the evolved systems to contain examples of both one-to-one and one-to-many mappings. However, they
are in fact exclusively one-to-one—one-to-many mappings are not observed in the final systems. We will
return to this point in Section 5.3.
What drives the elimination of many-to-one mappings from the evolving linguistic systems? This is a

consequence of the learning bias of learners using the standard learning rule α = 1, β = γ = −1, δ = 0—
learning according to this weight update rule biases learners against acquiring many-to-one mappings,
such that many-to-one mappings (either between complete meanings and signals or parts thereof) are less
likely to be successfully learned than mappings which are not many-to-one.
As demonstrated in Smith [85], a learner’s bias with respect to many-to-one mappings depends on the

relationship between γ and δ. Briefly:

δ > γ : Bias against many-to-one mappings—many-to-one mappings are less likely to be successfully
learned.

δ = γ : Neutrality — many-to-one mappings are learnable.
δ < γ : Bias in favour of many-to-one mappings—systems involving many-to-one mappings are more

likely to be successfully learned.

These learner biases introduce a further pressure acting on the language system during its cultural
transmission, and language changes over repeated learning episodes in response to these learner biases,
with mappings of the disfavoured types being eliminated. In the simulation results shown in Fig. 5, the
learner bias against many-to-one mappings leads to the elimination of such mappings, with convergence
on a stable, unambiguous linguistic system. Such a system allows optimal communication across gener-
ations.
The bias with respect to many-to-one mappings is independent from the capacity of a learning rule

to generalise. Recall from Section 5.1 above that individuals learning using the rule α = 1, β = −1,
γ = −1, δ = 1 are incapable of generalising (as α = δ), and consequently compositional systems do not
emerge in such populations (recall Fig. 4). However, this learning strategy results in learners disfavouring
many-to-one mappings (as δ > γ ). Fig. 6 shows the compositionality and communicative accuracy of the
evolving systems in populations learning according to this rule, in both the bottleneck and no bottleneck
conditions.
As expected, in both cases compositional systems do not evolve—the populations converge on holistic

systems. However, those holistic systems offer some degree of communicative functionality. In the case
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Fig. 6. Evolution of languages without the capacity for generalisation, but with a bias against ambiguity, in the no bottleneck
(a) and bottleneck (b) conditions.
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Fig. 7. Evolution of languages with the capacity for generalisation, but without a bias against ambiguity.

where there is no bottleneck on transmission, optimal communication systems rapidly evolve. In the case
where there is a bottleneck on transmission, communication systems evolve which give communicative
accuracy of slightly less than 0.2—the functionality of these systems across generations is suboptimal
due to their instability, but is still greater than chance, reflecting the one-to-one nature of that proportion
of mapping which is stable across generations. In other words, in both conditions populations of such
learners evolve systems which are non-compositional (as they are incapable of generalising), but which
tend to embody a system of one-to-one mappings.
The converse dissociation, where learners are capable of generalising but not biased against many-

to-one mappings, is also possible. Learners using the rule α = 1, β = −1, γ = 0, δ = 0 have such a
combination of biases. Fig. 7 shows the compositionality and communicative accuracy of the evolving
systems in populations learning according to this rule, in both the bottleneck and no bottleneck condi-
tions.
Given such a combination of biases, we might expect the emergence of a system which is composi-

tional (due to the learner capacity to generalise and the transmission bottleneck), but which only offers
intermediate levels of communicative function (due to the lack of any learner bias against many-to-one
mappings). As can be seen from Fig. 7, such populations in fact converge on a linguistic system which is
useless for communication (in fact, maximally ambiguous, where every meaning maps to a single signal)
and, in spite of their capacity for generalisation, non-compositional. This behaviour is a consequence of
the interaction between the capacity to generalise and the neutrality with respect to ambiguity.
To see how this is so, consider a scenario where a population of learners learning according to such

a strategy is presented with a perfectly compositional, perfectly unambiguous language—this is not the
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scenario in the model, but is a useful example. In such a population, a many-to-one mapping between
parts of meaning and parts of signal will occur by chance (either due to the randomness in production as
a consequence of the transmission bottleneck, or due to noise). For example, suppose the target language
is the perfectly compositional, unambiguous Lc.

Lc =
{〈

{1,1},ac
〉
,
〈
{1,2},ad

〉
,
〈
{2,1},bc

〉
,
〈
{2,2},bd

〉}
.

A learner exposed to the subset L′
c will be capable of reconstructing Lc via generalisation.

L′
c =

{〈
{1,1},ac

〉
,
〈
{1,2},ad

〉
,
〈
{2,1},bc

〉}
.

However, consider a learner exposed to the noisy subset Lnoise.

Lnoise =
{〈

{1,1},ac
〉
,
〈
{1,2},ad

〉
,
〈
{2,1},ac

〉}
.

The learner has to decide what values 1 and 2 for feature 1 should map to. Should they both map
to a? Or should they map to distinct characters? Learners with the bias against many-to-one mappings
will select the latter option, and will generalise to produce a perfectly compositional (although perhaps
changed) language, such as Lnew.

Lnew =
{〈

{1,1},ac
〉
,
〈
{1,2},ad

〉
,
〈
{2,1}, fc

〉
,
〈
{2,2}, fd

〉}
.

In contrast, a learners with no bias against many-to-one mappings will take the first option and gener-
alise to produce Lambiguous:

Lnoise =
{〈

{1,1},ac
〉
,
〈
{1,2},ad

〉
,
〈
{2,1},ac

〉
,
〈
{2,2},ad

〉}
.

This language is clearly ambiguous, and in particular the ambiguity has spread form the signal associ-
ated with meaning (2,1) to the signal associated with (2,2). In this way, randomly-occurring ambiguities
rapidly spread in populations of learners who are not biased against ambiguity but are capable of gen-
eralising. Note that the ambiguous system above is not compositional, according to our measure—the
ambiguity destroys the structure-preserving nature of the meaning-signal mapping, as different meanings
now map to similar signals.
The biases of language learners with respect to ambiguity (many-to-oneness) therefore interact with

their capacity to generalise, or lack thereof, and impact on the structure and functionality of a population’s
linguistic system. The results presented in this section show that a learner bias against ambiguity leads
to a linguistic system which is communicatively functional. However, and perhaps more surprisingly,
such a bias is also a prerequisite for the cultural evolution of compositional structure—without a learner
bias against many-to-one mappings, languages in which the structure of signals reflect the structure of
meanings do not arise. As such, our explanation for linguistic structure also offers an explanation for
linguistic function—the model results presented here suggest that the prerequisites for compositionality
also deliver communicative function as a side-effect, without the necessity for any explicit pressure for
communication.

5.3. Learning strategies supporting language learning

As discussed above, many-to-one mappings are inherently bad for communication, as they intro-
duce ambiguity. In contrast, one-to-many meaning-signal mappings do not endanger communication—a
producer’s intended meaning can always be retrieved by a receiver who knows the system. We might



H. Brighton et al. / Physics of Life Reviews 2 (2005) 177–226 203

therefore expect learner biases with respect to one-to-many mappings to be irrelevant for the structure
and function of a population’s linguistic system.
This proves not to be the case. As demonstrated in Smith [84], and in Smith [86] for the case of simple

signalling systems, a learner’s bias with respect to one-to-many mappings depends on the relationship
between α and β . Importantly, rules where α > β have a bias against one-to-many mappings—this is
the case with all learning rules used so far. The biases of rules where α ! β biases tend to be rather
idiosyncratic and depend on the values of γ and δ, but generally speaking such rules are not biased
against one-to-many mappings and may indeed be biased in favour of such mappings.
Having a bias against one-to-many mappings turns out to be crucial if a system of meaning-signal

mappings is to be learnable at all. To see that this is the case, consider the case where a learner at-
tempts to acquire a mapping between a single meaning and several signals. During learning the learner
observes the meaning paired with one of the possible signals. During production the learner must then
decide which signal to produce for the meaning, given their observations. The sensible behaviour is to
reproduce the observed signal—this is what learners using rules where α > β tend to do. However, this
behaviour implies a bias against one-to-many mappings—learning according to such a procedure means
(defeasibly) discounting the possibility that the meaning maps to some other signal or signals. Alterna-
tive learning strategies, where all possible signals are produced with equal probability for the particular
meaning, or where some other signal or signals are produced for the meaning, result in failure to repro-
duce the meaning-signal pair observed by the learner. As such, a bias against one-to-many mappings is
required if a linguistic system is to be learned. The consequence of this bias over cultural time is that
one-to-many mappings will be eliminated over time—in combination with a learner bias against many-
to-one mappings, this leads to emergent systems which map elements of meaning to elements of signal
in a perfectly transparent, one-to-one fashion.

5.4. Learning bias in humans

The simulation results presented above highlights three elements of learning as being important in the
evolution of linguistic structure:

(1) Learners must have the capacity to generalise.
(2) Learners must be biased against acquiring one-to-many meaning-signal mappings.
(3) Learners must be biased against acquiring many-to-one meaning-signal mappings.

Without (1) compositional structure cannot evolve. Without (2), a system of meaning-signal mappings
cannot be acquired. Without (3), neither compositional nor communicatively functional linguistic sys-
tems can evolve.13 However, given all three components, linguistic systems evolve which are functional
both from the perspective of the linguistic system (the linguistic system is stable from generation to gen-
eration, even in the presence of a transmission bottleneck), and from the point of view of language users
(the linguistic system allows perfect communication between individuals).

13 At least without some further pressure for function, such as natural selection acting on cultural transmission. It may be,
however, that linguistic evolution resulting from learner biases tends to drown out linguistic evolution driven by natural selection
[86]. In other words, having the wrong learning bias makes it difficult to evolve functional communication systems through
cultural processes, even with explicit selection for communication.
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What biases do human language learners bring to the language acquisition task?
There is a body of evidence from the developmental linguistics literature which suggests that child

language learners do indeed possess the biases outlined above in (1)–(3)—this evidence is reviewed
briefly below. Children’s capacity to generalise is uncontroversial (Section 5.4.1). The claim that human
language learners are biased against acquiring one-to-many meaning-signal mappings is supported by a
good deal of evidence, and is more or less widely accepted (Section 5.4.2). Research supporting the claim
that children are also biased against acquiring many-to-one mappings is at an earlier stage of develop-
ment, but some recent experimental work suggests that such a bias may indeed be present (Section 5.4.3).

5.4.1. Capacity to generalise
Human language learners have the capacity to generalise. Indeed, it would be extraordinary were this

not the case. Firstly, the capacity to exploit similarity structure in the environment in order to generalise
to novel situations is a basic property of learning, certainly in connectionist architectures such as the
brain [37,79]. In other words, this is not necessarily a language-specific or indeed species-specific capac-
ity. Secondly, the infinite expressivity of human language tells us that human language learners must be
making generalisations over the data they observe—were language learning merely to proceed by mem-
orisation, with no generalisation, no human with a finite lifespan could come to command an infinitely
expressive language.
Thirdly, in addition to these general arguments, specific experimental evidence demonstrates the ca-

pacity of children to generalise in a linguistic context. In English, the plural form of nouns (excluding
irregulars) is formed by the addition of a suffix -s to the noun stem, yielding, for example, dogs from dog.
Furthermore, the realization of the -s morpheme depends on the preceding consonant. The unmarked al-
lomorph (variant) of -s is realized as /z/, as in dogs. If the -s morpheme suffixes to a stem ending in a
voiceless stop, it is realized as /s/, as in cats. Finally, if the plural morpheme appears after a sibilant then
it is realized as /Iz/, as in horses.
Berko [5] experimentally tested the ability of children to produce the plural forms of nonsense nouns.

For example, the child was presented with a toy, told “This is a wug”, where “wug” is a nonsense noun,
and then shown two such creatures and prompted “Here are two . . .”. Aswug is a nonsense noun, invented
by the experimenter, we can be sure that the child will never have come across the plural form of this
noun. None the less, Berko found that children aged 4 to 5 can reliably produce the appropriate plural
form for such novel words—they are capable of generalising from observed plural forms to novel plurals.
Furthermore, children produced the plural using the appropriate allomorph (/z/ in the case of wugs), and
are therefore capable of making the relatively subtle generalisations involving the three allomorphs of
the plural morpheme, although they were most successful with the more common /z/ allomorph and least
successful with the /Iz/ allomorph.

5.4.2. Bias against one-to-many mappings
One-to-many mappings exist at several possible levels in natural language:

• At the level of the inflectional affix. For example, the three allomorphs of the English -s constitute a
one-to-many mapping from meaning (plural number) to form (/z/, /s/, or /Iz/).

• At the level of the free morpheme or word. For example, the English words dog, hound, and mutt are
(arguably) three forms which express the same meaning. One-to-many mappings at the level of the
word usually termed synonyms.
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• At the level of the sentence. For example “Charles gave the cake to Bethany”, “Charles gave Bethany
the cake” and “Bethany was given the cake by Charles” express the same proposition, and are para-
phrases of one another.

Based on such instances of one-to-many mappings, we might conclude that human language learners
do not possess a bias against one-to-many mappings. However, the end-state of the language acquisition
process does not necessarily give us a perfect insight into the biases at play during the process of acqui-
sition. It is possible that child language learners do bring some bias against one-to-many mappings to
the acquisition of language, but that competing pressures result in an adult competence which contains
one-to-many mappings. This in fact seems to be the case—while a full review of the historical and de-
velopmental linguistics literature is beyond the scope of this paper, we will present two types of evidence
which show the existence of such a bias.
Firstly, there is a historical tendency for languages to loose one-to-many mappings over time, which

we would expect if language learners bring a bias against such mappings to the language acquisition
task. To give a specific example, whereas only -s suffixation for the plural is productive in modern Eng-
lish, Old English had several productive possibilities, including -en suffixation (as fossilised in modern
ox-oxen) and the umlaut marking (as in the modern goose-geese). The transition from Old English to
modern-day English has involved a reduction in the number of different strategies for expressing the
plural—a reduction in one-to-many mappings. More generally, Mańczak [59], based on a survey of his-
torical grammars and etymological dictionaries, presents a number of “laws of analogical evolution” for
morphological change, the first of which is that “[t]he number of morphemes having the same meaning
more often diminishes than increases” [59, p. 284]—languages tend to lose one-to-many mappings in the
morphological system.There is historical evidence suggesting that language learners are biased against
one-to-many mappings.
If this is rather circumstantial, more solid examples of a bias against one-to-many mappings are

available. Markman and Wachtel [62], following Kagan [47], tested children’s behaviour on potentially
synonymous nonsense words. In Markman and Wachtel’s study, children were shown a single familiar
object (for example, a plate) and an unfamiliar object (e.g., a radish rosette maker) and asked by a puppet
frog to “Show me the fendle” where “fendle” (or similar) is a nonsense word. Children reliably respond
by giving or showing the unfamiliar object. Results from a control group study, where children were
asked simply to “Show me one”, indicated that this preference was not due to a preference on the part of
children to respond with the unfamiliar object—children only exhibit such a preference when prompted
with a novel word.
Markman [60–62] proposes that this behaviour is due to a Mutual Exclusivity (ME) bias in children—

“children should be biased to assume, especially at first, that terms [words] are mutually exclusive”
and “each object will have only one label” [60, p. 188]. Note that this is not an inviolable principle,
but a tendency or bias that can be overridden given sufficient evidence. The child in the task above
reasons, via Mutual Exclusivity, that the novel word fendle cannot refer to the familiar object, as this
would result in a one-to-many mapping (the plate object / concept would maps to two words, plate and
fendle). The child therefore infers that the new word must refer to the unfamiliar object, and responds
appropriately. Mutual Exclusivity is a bias against one-to-many mappings between meanings and sig-
nals.
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5.4.3. Bias against many-to-one mappings
As with one-to-many mappings, many-to-one mappings potentially exist at several levels in natural

language:

• Affixes. For example, the suffix -s in English expresses both plurality when suffixed to nouns, and
present tense (among other things) when affixed to verbs—this is an instance of a many-to-one map-
ping between meaning (plural number or present tense) and form.

• Words. For example, the English word bank expresses several meanings, including: a financial in-
stitution (when used as a noun); the ground adjacent to a waterway (noun); and the action of tilting
while turning (verb). Such ambiguous words are termed homonyms.

• Sentences. A single sequence of words may be used to express several distinct propositions, as a
consequence of containing homonymous lexical items, or as a consequence of being parsable in
several ways. A classic example of the latter, structural, ambiguity is given by the sentence “The boy
saw the man with the telescope”, which can be used to express two distinct propositions: the state of
affairs where the boy uses the telescope to see the man, and the state of affairs where the man has the
telescope.

As was the case with one-to-many mappings, the fact that examples of many-to-one mappings are
easy to find in natural languages might make us pessimistic about finding a bias against such mappings
in language learners. However, once again the point stands that many-to-one mappings could still be
prevalent in the end-state of language learning, and indeed language evolution, in spite of a learner bias
against such mappings, as a consequence of competing pressures. One obvious competing pressure in the
case of many-to-one mappings is the pressure for reuse of affixes and words. Given the necessarily finite
capacity of human memory, and the additional pressures imposed by articulatory and acoustic factors,
any learner bias against many-to-one mappings is unlikely to have reduced influence.
As was the case for one-to-many mappings, there is evidence that human language learners are biased

against acquiring many-to-one mappings from meanings to signals, although this evidence is rather more
scarce. At the general level, Slobin claims, under the guise of the maxim “be clear”, (e.g., [80–82]) that
children “strive to maintain a one-to-one mapping between underlying semantic structures and surface
forms” [81, p. 186]. Slobin explicitly links the prevalence of many-to-one mappings with difficulty of
acquisition. To repeat Slobin’s example: the Serbo-Croat inflectional system is “a classic Indo-European
synthetic muddle . . . there are many irregularities, a great deal of homonymy, and scattered zero mor-
phemes” [81, p. 191]. Slobin suggests that such many-to-one mappings explain why the Serbo-Croat
system is mastered relatively late by child language learners.
More recently, and perhaps more promisingly, the types of experiments used to demonstrate the Mu-

tual Exclusivity bias have been adapted and applied to the study of homonymous lexical items. These
experimental studies provide the strongest evidence, to date, that children are biased against acquiring
many-to-one mappings from meaning to signal, at least on the level of lexical items. The original study
is detailed in Mazzocco [65], with a subsequent study by Doherty [35].
In Doherty’s study, children are presented with a story in which key word is used several times in a

context which is intended to give strong clues as to the meaning of that word. For example, one story
relates to Hamish accompanying his mother to the zoo, the crucial passage running “At the zoo they saw
a strange blas/cake from Brazil. Hamish thought the blas’s/cake’s long nose looked funny” [35, p. 213].
The key word is either blas or cake, with the form of the key word alternating between subjects.
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After exposure to the story, the children were shown a selection of photographs and asked “Which
one is the [key word] in the story?”. In the case of the example above, the set of illustrations includes
pictures of a cake and a tapir (a long-nosed South American mammal). Doherty found that children are
highly successful at identifying the referent of the novel nonsense word blas—the context of the story
enables them to correctly identify this as referring to the tapir. However, children have low success rates
in identifying the referent of the word cake in this story. This word is used in a homonymous way—
whereas the context of the story strongly suggests that cake refers to the long-nosed South American
mammal, children already know that cake means a kind of food. As such, identifying the tapir as the
referent of cake in the story would mean accepting a many-to-one mapping from meanings to signals
(the cake and tapir concepts would both map to the ambiguous word cake). Children fail to identify
the referent of the homonymous cake because they are biased against many-to-one mappings in the
lexicon.

5.4.4. The origins of learning biases
The review above suggests that human language learners possess all the capacities/biases which the

computational model highlights as being key to the cultural evolution of compositional structure. In other
words, our explanation linking compositional structure with linguistic evolution holds up when we look
in more detail at the issue of the learning strategies which must be involved.
Why do humans have such learning biases? An intriguing possibility is that these biases have evolved

because of the type of linguistic structure they underpin—in other words, the particular learning strategy
applied by humans to the language acquisition task has evolved because it yields a language which
is stable over time (despite of the transmission bottleneck), and communicatively functional. Such a
hypothesis has been tested for the case of biases for the acquisition of simple signalling systems [44,86].
When considering the evolution of these capacities and biases in our own species, we might also won-

der to what extent these are present in other species—can the uniqueness of human language be explained
in terms of the uniqueness of these learning capacities to our species? The capacity to generalise is al-
most certainly not unique to humans, being (as discussed above) a general principle of systems that learn.
Comparative evidence on the biases of non-human species with respect to one-to-many and many-to-one
mappings is rather scarce. However, such biases in human language learners are often described as a
consequence of a sophisticated theory of mind (see [6] for review), probably unique to humans.

6. Compression, innovation, and linguistic evolution

The model of learning used in the previous section was geared toward exploring how learning biases,
which have fairly obvious parallels in human language acquisition, impact on linguistic evolution. In this
section a model of learning based on a normative theory of induction (the minimum description length
principle) is explored—rather than focusing on the learning task in terms of psychological principles
rooted in child language acquisition, the agents will instead induce the most likely hypothesis in the
hypothesis space, given some body of data. This allows us to test our theory of linguistic evolution
using a theoretically well-grounded model of induction, and, additionally, refine our understanding of
the role of innovation in the evolution of linguistic structure. Innovation—production of novel linguistic
structures—plays a role in the associative model outlined in the previous sections, but the procedures of
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induction and invention are intimately connected. In the model presented in this section, a more rigorous
separation of induction and invention is possible.
The issue we now turn to concerns the following question: When are inductive generalisations jus-

tifiable? A feature of the models discussed so far is that so long as structure is present in the data, we
consider the learner justified in harnessing this structure, and making generalisations from it. But is this
policy always justifiable? If no readily interpretable constraints guide the inductive process, then we re-
ally have no way of answering this question. To gain firmer theoretical support for the phenomenon of
cumulative linguistic evolution, we need to understand the learning process in terms of a theory of induc-
tion. Otherwise, we may be faced with the conclusion that linguistic evolution is only possible when we
consider learning algorithms with an inductive bias which is at odds with normative theories of induction.

6.1. Learning based on a simplicity principle

Induction is the task of choosing a hypothesis from a set H = {H1,H2, . . .} in the light of some data
D. A central problem in achieving this task stems from the realization that, in the general case, there
will be infinitely many candidate hypotheses consistent with the data. To specify which hypothesis is
appropriate always requires some criterion on which to judge competing hypotheses. The minimum de-
scription length (MDL) principle is one such criterion [55,77]. The MDL principle provides a means of
judging, given a hypothesis space H and some data D, which member of H represents the most likely
hypothesis given that D was observed. This judgement represents a point in a trade-off between com-
plexity and simplicity. An overly complex hypothesis which fits the data perfectly typically suffers from
the problem of over-fitting: incidental or noisy characteristics are captured by the hypothesis and are
taken to be features of the underlying distribution. An overly simple hypothesis, on the other hand, may
suffer from under-fitting: the hypothesis may be too general and fail to capture the characteristics of the
data. The MDL principle provides a means of judging which hypothesis represents the best point in the
simplicity/complexity trade-off. Importantly, this “best” position picks out the hypothesis which is both
the most probable hypothesis and the hypothesis which leads to the shortest redescription of the data.
The crucial observation is that regularity in the data can be used to compress the data. The MDL

approach represents a general principle, in that it provides a means by which to judge competing hypoth-
esis in contexts such as learning (e.g., [78]) and model selection in the wider sense (e.g., [41,74]). Of
great relevance to this discussion is the fact that MDL also features prominently as a principle in under-
standing hypothesis selection performed by the cognitive system on many levels [17,18] including that
of language acquisition [19,99]. In short, the minimum description length principle offers a theoretically
well-founded basis on which to perform hypothesis selection.
Formally, the MDL principle states that the most likely hypothesis is the one which minimises the sum

of two quantities. The first quantity is the length, in bits, of encoding the hypothesis. The second quantity
is the length, in bits, of the encoding the data, when represented using this hypothesis. To formalise
this statement, we require an optimal encoding scheme for the hypotheses, C1, and an encoding scheme
for data represented in terms of the hypothesis, C2. Furthermore, the only relevant issue for hypothesis
selection is the length of these encodings: LC1 and LC2 . Given the set of hypothesesH, and the observed
data, D, the MDL principle selects a member of H, HMDL, as follows:

(4)HMDL = min
H∈H

{
LC1(H) + LC2(D|H)

}
.
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This expression states that the best pattern to explain the data is the one which, when chosen, leads to
the shortest coding of the data. The coding is achieved using a combination of the chosen hypothesis and a
description of the data using this hypothesis. This is to say that, given the hypothesis and the description
of the data represented in terms of this hypothesis, the observed data can be described exactly. Note
that, in line with the discussion above, picking the smallest hypothesis—the hypothesis with the smallest
encoding length—will not necessarily achieve this goal. Small hypotheses may be too general and lead
to an inefficient recoding of the data. Similarly, a very specific hypothesis will describe the data verbatim
and fail to reveal the structural characteristics of the data, in the same way that atomistic analyses in
the associative model of learning failed to exploit structure in the data. The best solution represents a
trade-off between these two poles, and the MDL principle tells us how to judge competing hypotheses
with respect to this trade-off.
To transfer this discussion into a model and test the impact of learning based on the MDL principle

requires us to construct a hypothesis spaceH, and coding schemes over these hypotheses. Recall that the
data we refer to in this discussion are collections of utterances whose form is determined by the language
model introduced in Section 3.2. One example is the following set of utterances, Lcomp:

Lcomp =
{〈

{1,2,2}, adf
〉
,
〈
{1,1,1}, ace

〉
,
〈
{2,2,2},bdf

〉
,

〈
{2,1,1},bce

〉
,
〈
{1,2,1}, ade

〉
,
〈
{1,1,2}, acf

〉}
.

In order to apply the MDL principle to the selection of hypotheses given some arbitrary series of ut-
terances, we consider a hypothesis space composed of finite state unification transducers, or FSUTs14
[9]. These transducers relate meanings to signals by representing a network of states and transitions.
A number of paths exist through the transducer. Each path begins at the start state. These paths always
end at another privileged state termed the accepting state. A path through the transducer is specified by
a series of transitions between states; each of these transitions relates part of a signal to part of a mean-
ing. For example, consider the transducer shown in Fig. 8(a). It depicts a transducer which represents
the language Lcomp. This transducer—termed the prefix tree transducer—corresponds to the maximally
specific hypothesis: it describes the data verbatim, and therefore does not capture any structure present
in the language. It is the largest consistent hypothesis in H that can be used to describe the data Lcomp,
and only Lcomp. Given a transducer and a signal, the associated meaning can be derived by following a
path consistent with that signal, and collecting the meanings associated with each transition taken. Sim-
ilarly, given a meaning, the signal can be derived by following a path consistent with the meaning, and
concatenating each symbol encountered along the path.
Given some observed utterances, the space of candidate hypotheses will consist of all FSUTs consis-

tent with the observed utterances. By consistent, we mean that the candidate hypotheses are always able
to generate, at a minimum, all the observed utterances. We are interested in situations within which a
transducer is capable of generating utterances for meanings it has never observed; in such a situation, the
transducer can be said to have generalised.
If structural regularity exists in the observed language the prefix tree transducer can be used to derive

further, more general, transducers that are also consistent with the observed data. Such derivations are
achieved by applying compression operations on the transducer. Compression operators, when applica-

14 A FSUT is a variation on the basic notion of a finite state transducer (e.g., [43]). Our use of such transducers was inspired
by and extends the work of Teal and Taylor [91].
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Fig. 8. Given the compositional languageLcomp, the Prefix Tree Transducer shown in (a) is constructed. By performing edge and
state merge operations, outlined in (b) and (c), the transducer can be compressed. The transducer shown in (d) is compressed, but
does not lead to any generalisations. The transducer in (e) is fully compressed, and generalises to L+

comp. Note that ? indicates
a wildcard feature value.
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ble, can introduce generalisations by merging states and edges. Given a prefix tree transducer—which is
simply a literal representation of the observed data—only two operators, state merge and edge merge, are
required to derive all possible consistent transducers. For the details of how states and edges are merged,
as well as the details of the encoding schemes C1 and C2, we refer the reader to Brighton [9,10].
The important feature of the FSUTmodel, in combination with the MDL principle, is that compression

can lead to generalisation. For example, Fig. 8(b) and (c) illustrate some possible state and edge merge
operations applied to the prefix tree transducer representing Lcomp. The transducer resulting from these
merge operations is show in Fig. 8(d). Fig. 8(e) depicts the fully compressed transducer, which is found
by performing additional state and edge merge operations. Note that further compression operations are
possible, but would result in the transducer becoming inconsistent with the observed language.
By applying the compression operators, all consistent transducers can be generated. Some of these

transducers will be more compressed that others, and as a result, they are more likely to generalise than
others. Note that if Lcomp was an instance of a random (holistic) language, then few, if any, compression
operations would be applicable; regularity is required for compression to be possible.
Generalisation can lead to the ability to express meanings which were not included in the observed

linguistic data. For example, a close inspection of the compressed transducer shown in Fig. 8(e) reveals
that meanings which are not present in Lcomp can be expressed. The expressivity of a transducer is sim-
ply the number of meaning that can be expressed. The language L+

comp, shown below, contains all the
meaning-signal pairs which can be expressed by the fully compressed transducer in the above example.

L+
comp =

{〈
{1,2,2}, adf

〉
,
〈
{1,1,1}, ace

〉
,
〈
{2,2,2},bdf

〉
,
〈
{2,1,1},bce

〉
,

〈
{1,2,1}, ade

〉
,
〈
{1,1,2}, acf

〉
,
〈
{2,1,2},bcf

〉
,
〈
{2,2,1},bde

〉}
.

In this case, compression led to generalisation, and the expressivity of the transducer increased from
6 meanings to 8 meanings. By compressing the prefix tree transducer, the structure in the compositional
language is made explicit, and as result, generalisation occurs. Compression is not possible when struc-
ture is lacking in the observed data, and the result will be that meanings not included in the observed data
cannot be expressed.
At this point it is worth highlighting how the FSUT model relates to the discussion of the one-to-

one bias discussed in Section 5.2. First consider that, in this model, a one-to-many mapping cannot
occur as production is deterministic: even if multiple signals are consistent with a single meaning, only
one of these signals will ever be produced. Hence, a one-to-many relationship between meanings and
signals is not possible due to a bias imposed by the deterministic production mechanism. Second, we
need to consider many-to-one mappings. Because the set of observed meanings is always a sample, the
maximally general coding of meanings (i.e., maximal use of wildcards) required to represent a many-to-
one mapping will eventually be deviated from. Why is this? At some point the set of meanings supporting
the many-to-one relationship will be under-represented such that the production of one or more members
of this set will be performed via invention. As a result, the language will deviate from the many-to-one
relationship. The bias in this model against many-to-one mappings is therefore a combination of the
sampling process imposed by the bottleneck, and the inductive bias. Here, we see how both the model of
induction and the model of production can influence the structural characteristics of evolved languages.
We now have a hypothesis space over which we can apply the MDL principle. The hypothesis chosen

by a learner in our model in light of data D is the one with the smallest description length, HMDL. This
search for this hypothesis is performed using a hill-climbing search described in Brighton [10,11].
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6.2. The evolutionary consequences of the simplicity principle and random invention

With these model components in place, we are now in a position to assess whether induction based on
the MDL principle within the Iterated Learning Model leads to linguistic evolution. We will focus on the
case where there is a bottleneck on transmission, with only minimal changes to other components of the
Iterated Learning Model.15
In the new model, each simulation run must be initialised with a random language. In the associative

matrix model detailed above, this was achieved by simply allowing the initial agent to produce at random,
according to their matrix of associations of strength 0. In the new model this is not possible, as the initial
agent has no FSUT to produce with. Consequently, a random initial language is generated according
to the parameter values, and the initial agent learns based on this language. Fig. 9 shows the resulting
transducer. Note that negligible compression occurs, and as a result the transducer does not generalise to
novel meanings: 32 utterances were given as input, and each of these is encoded by a single path through
the transducer.. The language represented by the transducer is holistic and the linguistic structure we seek
to explain is therefore lacking. Can a structured mapping which leads to generalisation evolve through
cultural adaptation?

Fig. 9. A transducer HMDL induced from a random initial language. Negligible compression occurs.

15 Parameter values: F = 3, V = 4, |Σ | = 20, lmax = 15, e = 32. Longer signals and a larger maximal signal length are
possible in comparison to those used with the associative matrix representation.
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We must now consider a crucial aspect of the model which was largely side-stepped in the associative
network model presented in Sections 4, 5: the issue of invention. Invention occurs when an agent is
prompted to produce a signal for a meaning which it has no signal for—that is, the meaning was not
observed in conjunction with a signal during learning, and also cannot be expressed as a result of any
generalisation occurring due to compression. According to this definition, true invention never occurs in
the associative network model. In the associative model, the learner simultaneously maintains a set of
weighted relationships between all possible meanings and all possible signals, including meanings and
signals not observed. As such, generalisation based on regularities in the data, and innovation of a new
signal for a particular meaning are indistinguishable—both proceed via the same winner-take-all process,
as a consequence of the weights in the system of associations. These innovations (generalisations or ‘true’
inventions) are therefore a consequence of the agent’s learning behaviour, with, for example, agents
learning with a bias against many-to-one mappings tending to innovate in ways which avoid producing
such mappings.
The separation between inductive generalisation and true invention in the current model is much

cleaner. For example, the transducer in Fig. 9 can only express the meanings which were present in
the observed data. However, within the Iterated Learning Model, individuals will be required to express
meanings which were not in the set of utterances which they observed during learning, and we must
therefore define an invention procedure. A number of invention strategies are possible—initially we will
adopt a policy of random invention, where a random signal is generated for novel meanings.
Fig. 10(a), (b) depicts the process of a 200 generation run of the new model. Fig. 10(a) depicts com-

pression rate, α, as a function of iterations. The compression rate measures the relative size of the prefix
tree transducer, Hprefix, and the chosen hypothesis Hmdl, and is defined as:

α = 1− |Hmdl|
|Hprefix|

.

Fig. 10. Linguistic evolution resulting from partially random invention.
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A high compression rate means that the language is compressible. As can be seen from the figure,
the compressibility of the language changes very little over time—the initial random language undergoes
no significant adaptation and remains unstructured and therefore uncompressible (α ≈ 0.06). Fig. 10(b)
highlights this fact, by showing the transitions through a state space depicting the expressivity of the
language as a function of the encoding length of the language. Here, we see that from the initial state,
labelled A and corresponding to the transducer depicted in Fig. 9, the systems follows an unordered
trajectory through the sub-space of small inexpressive transducers. Because the language remains un-
structured, generalisation is not possible and expressivity remains low. Similarly, unstructured languages
cannot be compressed, and therefore the encoding length remains relatively high.
The key point here is that a cumulative evolution of structure does not occur as it did in Section 4: the

model as it stands fails to match the predictions of our theory, or indeed our findings from the associative
learning model. The reason for this failure is that the mechanisms supporting linguistic evolution—
language learning and language production—are somehow failing to lead to the cumulative evolution of
structure. In fact, the source of the problem is the way in which linguistic innovation via invention is
modelled.

6.3. Invention based on simplicity principle

The MDL principle can tell nothing about the process of production—unlike the associative model
of learning, the model of learning used here can tell us only which hypotheses should be induced. The
process of interrogating the hypothesis with novel meanings to yield signals is not fully defined, and needs
to be developed. Our first attempt at an invention mechanism—invention of random strings—proved to
be in some way deficient.
To address this problem, a more principled invention mechanism is proposed, where the invented sig-

nal is a derived using the induced hypothesis itself, rather than being constructed at random—in the same
way that invention is achieved in the associative matrix model, the invented signal will be constrained by
structure present in the hypothesis, which is in turn determined by the data observed during learning.
The new invention method exploits the structure already present in the hypothesis by using those parts

of the transducer consistent with the novel meaning to construct part of the signal. This approach is
detailed in Brighton [10,11], but the essentials of the process can be summarised as follows. An invented
signal is selected such that the invented signal, if it were seen in conjunction with the novel meaning
during the learning phase, would not lead to an increase in the MDL of the induced hypothesis. This
invention procedure therefore proposes a signal which in some sense matches the structure of hypothesis.
If such a signal cannot be found, then no signal is produced. In short, the invention procedure, rather than
being random, now takes into account the structure present in the hypothesis.
Fig. 11 illustrates the process of a second Iterated Learning simulation, incorporating the new invention

procedure. this evolutionary trajectory is typical of such simulation runs. Strikingly, Fig. 11 reveals a very
different evolutionary trajectory to that shown in Fig. 10, as a consequence of the alternative invention
procedure. Fig. 11(a) shows a transition from low to high rates of compressibility. Fig. 11(b) illustrates an
entirely different trajectory through state space, one where a series of transitions lead to small, stable, and
expressive hypotheses. Starting at an expected expressivity of approximately 22 meanings (point A), the
system follows an L-shaped trajectory. There are two distinct jumps to a stable state where we find small
hypotheses capable of expressing all 64 meanings. The induction and invention processes consistently
direct linguistic evolution toward compositional systems.
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Fig. 11. Linguistic evolution arising from the application of the intelligent invention scheme.

The first significant transition through the state space takes the system from the bottom-right end of the
L-shape (point A) to the bend in the L-shape (points B and C), where expressivity increases slightly, but
the minimum description length of the language decreases by a factor of 3. From requiring approximately
6000 bits to encode the evolving language, linguistic evolution results in transducers being induced with
an MDL of approximately 2000 bits. The lack of increase in expressivity is a reflection of the transducers
organising themselves in such a way that significant compression results, but an increase in expressivity
is not achieved. The second transition, leading to the top of the L-shape (through point D to point E), is
very different in nature. Here, for a small decrease in the MDL of the developing language, a significant
increase in expressivity occurs. This is an important transition, as it results in the system entering a stable
region of the state space. Although a few deviations away from this stable region occur early on, the
system settles into a steady state characterised by high expressivity.
Fig. 9(a) depicts the transducer corresponding to point A in Fig. 11(b), while Fig. 12(a)–(d) depicts

the transducers at points B , C, D, and E. Fig. 12(a) represents the transducer corresponding to point
B . In this transducer, we see the beginnings of significant structure emerging. The first symbol in each
signal appears to discriminate between feature values in the second feature. This structural relationship
acts as a seed for further discrimination, which will ultimately result in generalisation. Between point
B and point C, the evolution of the language becomes increasingly more evident. Point D, shown in
Fig. 12(c), corresponds to a transducer where further discrimination occurs, and certain meanings can
be expressed even though they were not observed—significant generalisation is occurring. Fig. 12(d)
illustrate the occurrence of further discrimination and generalisation, as the state of the system climbs up
to and moves around a stable region of the state space.
This second model again demonstrates how the mechanisms of induction and production can lead to

the evolution of generalisable, compositional structure. This is made possible by linguistic evidence—
utterances—coding information that determines the induction of a hypothesis capable of generalisation,
where the linguistic evidence comes to have this structure as a consequence of those same mechanisms of
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Fig. 12. Languages arising during linguistic evolution driven by MDL induction and intelligent invention. In (a), structure is
evident as certain paths merge. In (b), an intermediate stage is shown where significant compression is evident but generalization
is not possible. In (c), (d) further compression is possible, and novel meanings can be expressed.



H. Brighton et al. / Physics of Life Reviews 2 (2005) 177–226 217

induction and production. The new model highlights the fact that learning is just one of the mechanisms
driving linguistic evolution: the issue of production and, in particular, invention, plays a key role.

6.4. Historical accidents and the evolution of structural complexity

Before moving on to discuss the nature of language as an evolutionary system in more general terms,
it is worth considering the nature of stable states in this model, as they provide examples of the linguistic
complexity not seen in the associative model. Fig. 13 shows two stable states. Fig. 13(a) depicts a trans-
ducer for a meaning space defined by F = 3 and V = 2 along with the grammar, G1, which describes
how signals are constructed for each of the 8 meanings. Similarly, Fig. 13(b) depicts the transducer and
the corresponding grammar, G2, for a meaning space defined by F = 3 and V = 3 which comprises 27
meanings.
Optimal transducers, those with the lowest description length given the parameter values, are those

where a single symbol is associated with each feature value of the meaning space. Even though the mini-
mum description length principle would prefer these transducers, they do not occur in the model. A close
inspection of the transducers shown in Fig. 13 demonstrates that features are coded inefficiently: variable
length strings of symbols are used, rather a single symbol, and some feature values are associated with
redundant transitions which carry no meaning. In Fig. 13, for example, all meanings are expressed with
signals containing a redundant symbol (the second symbol d). These imperfections are frozen accidents:
the residue of production decisions made before stability occurred. The imperfections do not have a detri-
mental impact on the stability of the language, and they therefore survive repeated transmission due to
being part of the compositional relationship coded in the language. This phenomenon is an example of
how the process of linguistic evolution leads to complexity which is not a direct reflection of the learn-
ing bias: transducers with lower description length exist. The evolved transducers serve the function of
stability despite this deviation from the “optimal” transducer, and this is why such languages persist.

7. Conclusion: Language as an evolutionary system

An essential distinction underlying the picture developed so far contrasts the capacity for language
with languages themselves. Without doubt the capacity for language is a biologically determined com-
petence, and this competence is specific to humans. Languages themselves, on the other hand, are not
biologically determined in the same sense: they result from an interaction between the capacity for lan-
guage and the linguistic environment. When we talk about languages themselves we refer to a particular
relationship between meanings and signals. When we talk about the capacity for language we refer to
a computational system that processes languages. Maynard Smith and Szathmáry argue that this ge-
netically determined capacity for language was the foundation on which the eighth major transition in
evolution was based. This transition allowed information transmission to occur through language: lan-
guages provide a substrate for the transmission of information. How can this be? Like DNA, language
provides a system for composing an indefinite number of messages from finite means:

Both the genetic and linguistic systems are able to transmit an indefinitely large number of messages
by the linear sequence of a small number of distinct units. In genetics, the sequence of four bases
enable the specification of a large number of proteins, and these, by their interactions, can specify
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Fig. 13. Two evolved languages: (a) shows a transducer, and the corresponding grammar, containing redundant transitions,
variable length signals, and several syntactic categories; (b) shows a language with variable length substrings.

an indefinitely large number of morphologies. In language, the sequence of some 20 or 30 distinct
unit sounds, or phonemes, specify many words, and the arrangement of these words in grammatical
sentences can convey an indefinitely large number of meanings [64, p. 139].

This system of information transmission was novel in the sense that it introduced a entirely different
physical medium over which information could be transmitted (see [63, p. 12]). The information trans-
mitted by language, according to this view, is not information relating to the essential characteristics of
language itself, but rather informational structures that are expressed using language. Maynard Smith
and Szathmáry envisage language as transmitting a message which carries information about cultural
artifacts such as traditions, religions, and so on:
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It is impossible to imagine our society without language. The society we live in, day and night, depends
on it [. . . ] on detailed social contracts, which could not exist without language [64, p. 149].

This is the complexity which they seek to explain, which it turn depends on the complexity of language
and its provision of a system in which indefinitely many meanings can be expressed. Put simply, language
is the mode of information transmission which allowed the evolution of complexity in human culture.
In contrast, in this paper we have focused on the information that language carries about its own

construction. Any behaviour that is transmitted through iterated learning must, whatever else it does,
provide information to learners sufficient for that behaviour’s survival over time. It is this fact that is key
to understanding linguistic transmission in an evolutionary sense. Ultimately, iterated learning leads to
adaptation.
Recall that the transmission of language is subject to constraints; the channel through which linguistic

information is transmitted is restricted. Constraints such as the transmission bottleneck determine the
kind of information that can be transmitted successfully. As a result, the transmission bottleneck induces
an evolutionary dynamic—certain kinds of information (linguistic structure) can survive the transmission
bottleneck whereas others cannot.16
To illustrate this point, consider the experiments discussed in Sections 4 and 6. Here, data drawn

from a compositional mapping between meanings and signals codes linguistic information that can be
transmitted successfully. But why is this? In general, data conforming to some regular pattern, such as a
compositional relationship, can justify a general statement about the data. The statement can be general
in the sense that it identifies a relationship which extends beyond observed instances to include other,
unseen data. Contrast this situation with one where the data does not conform to any regular pattern.
Here, the induction of a general statement or pattern would not, by and large, be justifiable.
The crucial issue here is that general statements or patterns are consistent with many bodies of evi-

dence, while specific patterns are not. Consequently, these general patterns are re-codeable using different
data: the same pattern can justifiably be induced despite support for this pattern coming from a different
body of data.
Why is this important? As long as there is a limit on the data available to the learner—as long as

there is a transmission bottleneck—the more general a pattern is, the more likely it is to be transmitted
successfully. Given variation in the degree to which information can successfully be transmitted, we can
rightly talk of certain information coded in a language as being adaptive to the problem of linguistic
transmission. This observation forms the basis for the claim that languages adapt to be transmissible. We
have seen this in the models presented in this paper. Over the course of many generations, the language
changes as it is transmitted, and we see an evolution from unstable languages to stable ones.
One way to understand this process of adaptive evolution is from the perspective of competition. We

can think of the data available to the learner as a finite resource—a window within which a linguistic
generalisation or regularity must be expressed if it is to survive. Crucially, there are likely to be many
different regularities that must compete for this resource.
It is clear from the simulation models discussed in Sections 4 and 6 that, even given these restricted

models of language, the information coded in linguistic data and interpreted by the language learner

16 It should be stressed, however, that the iterated learning models presented here demonstrate that linguistic structure is not an
inevitable outcome of iterated learning. The presence of transmission bottleneck, and particular kinds of bias in both learning
and production, are examples of constraints that must be in place.
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potentially encodes more than one system of regularity. There are several ways in which this can be the
case.
Firstly, the data in interaction with the learning device may encode a system of regularity which cov-

ers some subpart of the overall system of meaning-signal mappings. As such, a language can consist
of several systems of regularity. Such a situation is common-place in natural language. As mentioned
earlier, the system for forming the plural in Old English consists of several systems of regularity (the
-s, -en and umlaut systems), each responsible for some subpart of the mapping between meaning and
signal. To take another example, Latin has five nouns declensions: every noun belongs to one of these
noun declensions, and each declension has an associated system of case endings. These systems of case
endings are regular but, importantly, differ across declensions. Thus we see competing systems of regu-
larity in natural language, and we see similar competition between generalisations during the evolution
of linguistic structure in the models presented in this paper.
The examples above occur when two or more systems of regularity compete for essentially the same

role. However, language also embodies multiple systems of regularity which are coexistent, rather than
competing, but which are intimately and reciprocally connected. For example, the rich case structure of
Latin, through phonological change, became ambiguous during the history of French. As a result of this
ambiguity, development from Old to New French saw the abandonment of the case system in favour of
word order [93]. Changes in a language’s phonological system often have a cascade of consequences
for other parts of the linguistic system—a change in one system of regularity results in a change in a
system of regularity operating at another level. Such examples, where small changes lead to subsequent
restructuring, is a characteristic feature of the process of language change. Such interactions are not
observed in the types of models presented here, where linguistic structure is essentially modelled at a
single level, but models could be designed specifically to address such questions.
Finally, one system of regularity may be subsumed within another. For example, the structural regu-

larity in English that Verb precedes Object inside the verb phrase is subsumed within the generalisation
that the word order of English is Subject-Verb-Object. A clear analogue of this type of multiple regularity
is witnessed in the evolutionary trajectories of languages in our models. For example, a system where
meaning fragment (3,3,∗) maps to string-initial de, meaning fragment (3,2,∗) maps to string-initial da
and so is subsumed in a system where (3,∗,∗) maps to string-initial d, (∗,2,∗) maps to string-second e
and so on. In this case, the level of regularity which wins out—which is actually utilised by the linguistic
agents—is determined by factors such as the transmission bottleneck. Less general regularities are likely
to be replaced by wider-ranging regularities.
In addition to these multiple systems of regularity evolving, competing and interacting, different sys-

tems may evolve at different speeds. We see this occurring in, for example, Fig. 11(b), where the second
feature of the meaning space (dealt with by the first two transitions of the transducer) is at an advanced
stage of regularity in comparison to the other two features. This observation demonstrates that, even for
very simple models of language, we must consider the message being transmitted as a composite message
relating to more than one system of regularity. Given a model of language capable of capturing a wider
range of linguistic phenomenon, and without doubt in the case of natural language, the message will
be a significantly more complex: multiple systems of regularity will vie for transmission, and indirectly
influence the transmission success of still other systems of regularity.17

17 See Brighton and Kirby [13] for a model that makes this kind of competition overt.
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Fig. 14. How the mechanisms driving biological evolution and linguistic evolution differ in the manner in of transmission.
Biological evolution proceeds through the direct, but selective, replication of DNA. Linguistic evolution transmits information
through the twin processes of speaking (translation) and learning (reverse translation).

The process of linguistic evolution, in the light of this argument, might be understood in terms of
the differential replication of multiple systems of regularity. Those adopting the memetic approach take
precisely this route, seeking to identify the units of cultural evolution (“memes”), and viewing cultural
evolution as an instance of a more general Darwinian process (see, e.g., [2,33]).
Are we then close to finding a strong, and potentially fruitful, analogy between linguistic and genetic

evolution, as suggested by memeticists? Or do there remain theoretically-significant differences between
these two evolutionary processes, which justify a separate treatment?
One of the problems with a direct analogy is that there are fundamental differences in the mechanism

of replication in each case. Fig. 14 illustrates this point. DNA persists by a process of direct copying
governed by a selective mechanism that prunes lines of inheritance. Linguistic knowledge, on the other
hand, must persist through a repeated cycle of production and induction. We can think of the task of the
learner as akin to that of the reverse engineer, trying to figure out what the blueprints are for a device
while only being able to look at its behaviour. In the system of biological evolution there is no such
reverse engineer—the blueprints are passed on directly every generation.
The consequences of this difference are profound. Whereas the engine driving biological adaptation

is the survival and reproductive success of the organism in the environment, linguistic evolution arises
from the mechanisms of replication themselves. A linguistic regularity survives because it has properties
that make its faithful replication easy. The survival of a set of genes has little to do with its replicability
and everything to do with features of the organism those genes code for.
It is interesting to note that these fundamental differences are not immediately obvious when we look

at the behaviour of the two kinds of evolutionary system. In particular, much of the time it seems entirely
reasonable to treat linguistic evolution as a process driven by selection just as genetic evolution is. If
two linguistic rules are competing to be expressed in the limited data available to the learner, and only
one is successfully induced, perhaps because it was relevant to a larger range of meaning, is this not a
perfect example of selective evolution? The problem with this approach is that there may be times where
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competition leads to the induction of totally new rules in one step. Linguistic paradigms can change
through a process of “reanalysis”, the output of a number of different rules can lead to the origins of a
new rule that subsumes them all—indeed, this process is fundamental to the evolution of increasingly
general regularity in the iterated learning models we have described.
Recognising that linguistic transmission leads to adaptive linguistic evolution and that this evolution

has important differences from other evolutionary systems is, we believe, the first step to a truly ex-
planatory account of why language is the way it is. Computational and mathematical models of iterated
learning offer a principled way of exploring the properties of this adaptive system, helping us understand
how our biologically-provided learning biases shape linguistic evolutionary dynamics, and how those
dynamics ultimately give rise to the complex structure that is the hallmark of human language.

Appendix A. Measuring compositionality and communicative accuracy

A.1. Measuring compositionality

As discussed in the text, a compositional language is one in which the meaning of a signal is a function
of the meaning of its parts and the way in which they are combined. One consequence of this is that
compositional languages are topographic mappings between meanings and signals [51]. Neighbouring
meanings will share structure, and that shared structure in meaning space will map to shared structure in
the signal space. Consequently, meaning which are near one another in the meaning space (according to
some measure of semantic distance) will tend to map to signals which are near to one another in signal
space.
For example, the sentences John walked and Mary walked have parts of an underlying semantic rep-

resentation in common (the notion of someone having carried out the act of walking at some point in the
past) and will be near one another in semantic representational space. This shared semantic structure leads
to shared signal structure (the inflected verb walked)—the relationship between the two sentences in se-
mantic and signal space is preserved by the compositional mapping from meanings to signals. A holistic
language is one which does not preserve such relationships—as the structure of signals does not reflect
the structure of the underlying meaning, shared structure in meaning space will not necessarily result in
shared signal structure, and consequently holistic mappings will not preserve topography.
The compositionality measure used in this paper captures this notion, and is based on the measure

developed in Brighton [8] for Euclidean meaning and signal spaces. The measure of compositionality
is simply the degree of correlation between the distance between pairs of meanings and the distance
between the corresponding pairs of signals. In topographic mappings there will be a positive correlation
between the distance between pairs of meanings and the distance between the corresponding pairs of
signals. If shared structure does not necessarily lead to shared signal structure then there will be no
correlation.
In order to evaluate the compositionality of an agent’s communication system, the production process

is applied to every m ∈ E to produce the set O, the observable meaning-signal pairs produced by that
agent. In order to measure the degree of compositionality we measure the degree to which the distances
between all the possible pairs of meanings correlates with the distances between their associated pairs
of signals. More formally, we first take all possible pairs of meanings 〈mi,mj #=i〉, where mi ∈ M and
mj ∈ M. We then find the signals these meanings map to in the set of observable meaning-signal pairs
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O, 〈si, sj 〉. This will give us a set of n meaning-meaning pairs and a set of n signal-signal pairs. Let
"mn = HD(mi,mj ) be the Hamming distance18 between the two meanings in the nth pair of meanings
and "sn = LD(si, sj ) be the Levenstein distance19 between the nth pair of signals. Furthermore, let
"m =

∑n
i=1"mn

n
be the average inter-meaning Hamming distance and "s =

∑n
i=1"sn

n
be the average inter-

signal Levenstein distance. We can then compute the Pearson correlation coefficient for the distance pairs
〈mn, sn〉, which gives the compositionality of a set of observable behaviour, C(O):

C(O) =
∑n

i=1("mi −"m)("si −"s)
√

(
∑n

i=1("mi −"m)2
∑n

i=1("si −"s)2)

,

C(O) ≈ 1 for a compositional system and C(O) ≈ 0 for a holistic system.

A.2. Measuring communicative accuracy

An individual’s A matrix therefore defines that individual’s production behaviour p and reception
behaviour r . If p is interpreted as a probabilistic function p(sj |mi), which gives the probability of pro-
ducing signal sj given meaning mi , and r is similarly interpreted as a probabilistic function r(mi |sj )
then the communicative accuracy between a speaker P using production function p(s|m) and a hearer R
using reception function r(m|s) is given by:

(A.1)ca′(P,R) =
∑|M|

i=1
∑|S|

j=1p(sj |mi) · r(mi |sj )

|M|
assuming all meanings are equally frequent and equally important. In other words, the communicative
accuracy between speaker P and receiver R is the average probability of the speaker producing a signal
for a given meaning ms , and the hearer interpreting the received signal as meaning mh = ms . The two-
way communicative accuracy between two individuals A and B acting in turn as speaker and hearer is
then:

ca(A,B) = ca(A,B) + ca′(B,A)

2
.

This is the measure of communicative accuracy employed throughout the paper.
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