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Abstract. How and where are the universal features of language spec-
ified? We consider language users as situated agents acting as conduits
for the cultural transmission of language. Using multi-agent computa-
tional models we show that certain hallmarks of language are adaptive
in the context of cultural transmission. This observation requires us to
reconsider the role of innateness in explaining the characteristic struc-
ture of language. The relationship between innate bias and the universal
features of language becomes opaque when we consider that significant
linguistic evolution can occur as a result of cultural transmission.

1 Introduction

There must be a biological basis for language. Animals cannot be taught lan-
guage. Now imagine having a thorough knowledge of this capacity: a detailed
explanation of whatever cognitive processes are relevant to learning, understand-
ing, and producing language. Would this understanding be sufficient for us to
predict universal features of language? Human languages exhibit only a lim-
ited degree of variation. Those aspects of language that do not vary are termed
language universals. The assumption of contemporary linguistics and cognitive
science is that these hallmarks can shed light on the cognitive processes underly-
ing language. In the discussion that follows we reflect on the reverse implication,
and argue that language universals cannot be fully explained by understanding
biologically determined aspects of cognition. The relationship between the two
is opaque, and mediated by a cultural dynamic in which some linguistic forms
are adaptive [23].

In addressing this question one must reconsider the traditional practice in
cognitive science of, first, isolating a competence from its cultural context and
then, secondly, attempting to understand that competence such that its be-
haviour can be fully explained. This practice is questioned by the proponents of
embodied cognitive science [12,44,11,4,32]. We examine the claims of embodied
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Situated Cognition and the Role of Multi-agent Models 89

cognitive science, specifically the principle of situatedness, and relate this enter-
prise to recent work in the field of computational evolutionary linguistics [1,24,2,
26]. We note that these two approaches share a methodological assumption, one
that singles out cultural context as being a theoretically significant considera-
tion. In the discussion that follows we show how this notion of cultural context
can be modelled using multi-agent computational models. In short, we aim to
show how multi-agent systems can be used to shed light on some fundamental
issues in linguistics, but also cognitive science in general.

First we discuss alternative standpoints in explaining why, as a cognitive pro-
cess, language exhibits certain designs. We argue that situatedness must form
part of any explanation – a thorough understanding of linguistic competence
cannot lead to a thorough explanation for the universal aspects of language
structure. To flesh this claim out we present work on an agent-based framework
for studying the evolution of language: the iterated learning model. In particu-
lar, we focus on compositionality in language. Insights gained from these models
suggest that language designs cannot be explained by understanding language
in terms of a detached individual’s knowledge of language. An argument for this
stance is presented in Section 4 where we make explicit the foundational princi-
ples that underly our approach to understanding the characteristic structure of
language.

2 Explaining Universal Features of Language

Take all the world’s languages and note the structural features they have in
common. On the basis of these universal features of language, we can propose
a universal grammar, a hypothesis that circumscribes the core features of all
possible human languages [7]. On accepting this hypothesis, we should ask: Why
is linguistic form subject to this set of universal properties? More precisely, how
and where are these restricted set of structures specified? The discussion that
follows will address the manner in which this question is answered.

The hunt for an explanation of universal features is traditionally mounted
by arguing that universal grammar is an innate biological predisposition that
partially defines the manner in which language is learned by a child. The lin-
guistic stimulus a child faces, be it Chinese or Spanish, through the process of
learning, results in a knowledge of language. For Chomsky learning is “better
understood as the growth of cognitive structures along an internally directed
course under the triggering and partially shaping effect of the environment”[9].
So an innate basis for language, along with the ability to learn, permits the child
to arrive at a knowledge of language. The degree to which language is specified
innately is a matter of heated debate. At one extreme, we can imagine a highly
specialised “language instinct” [33] and at the other, we can imagine a domain
general learning competence which serves language as well other cognitive tasks
[14].
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2.1 The Object of Study

For a moment, let us stand back from this debate and examine the vocabulary of
explanation we have employed to answer the original question: How and where
are universal features of language specified? We notice that an explanation of a
population level phenomenon – language – has been reduced to the problem of
an individual’s knowledge of language. Languages vary greatly, but we are specif-
ically interested in the features common to all languages. Universal properties
of language, to a greater or lesser extent, are specified innately in each human.
This de-emphasis of context, culture and history is recurring theme in cognitive
science, as Howard Gardner notes: “Though mainstream cognitive scientists do
not necessarily bear any animus [...] against historical or cultural analyses, in
practice they attempt to factor out these elements to the maximum extent pos-
sible.” [15]. Taking this standpoint helps in mounting a practical investigation
into a possible answer to the question. The universal aspects of language we see
in the world are strongly correlated with an individual’s act of cognition, which
is taken to be biologically determined. Now we have isolated the real object of
study. Understanding the innate linguistic knowledge of humans will lead us to
an understanding of why language is the way it is. For the purposes of this study,
let us characterise this position.

Principle 1 (Principle of detachment.) A total explanation of the innate
basis for language, along with an explanation of the role played by the linguis-
tic stimulus during the language acquisition process, would be sufficient for a
thorough explanation for the universal properties of language.

Now the problem is to account for a device that relates input (linguistic
stimulus) to output (knowledge of language). For example, Chomsky discusses
a language acquisition device (LAD) in which the output takes the form of a
grammatical system of rules. He states that “An engineer faced with the prob-
lem of designing a device for meeting the given input-output conditions would
naturally conclude that the basic properties of the output are a consequence of
the design of the device. Nor is there any plausible alternative to this assump-
tion, so far as I can see” [8]. In other words, if we want to know how and where
the universal design features of language are specified, we need look no further
than an individual’s competence derived from primary linguistic data via the
LAD. This position, which we have termed the principle of detachment, runs
right through cognitive science and amounts to a general approach to studying
cognitive processes. For example, in his classic work on vision, Marr makes a
convincing case for examining visual processing as a competence understood en-
tirely by considering a series of transformations of visual stimulus [28,29]. We will
now consider two bodies of work that suggest that the principle of detachment
is questionable1.

1 There are other arguments for questioning the principle of detachment, for example,
those presented by Winograd & Flores [44], but we omit them for the sake of brevity.
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Explanation Via Synthetic Construction. One of the aims of cognitive
science, and in particular, artificial intelligence (AI), is to explain human, animal,
and alien cognition by building working computational models. Those working
in the field of AI often isolate a single competence, such as reasoning, planning,
learning, or natural language processing. This competence is then investigated in
accordance with the principle of detachment, more often than not, in conjunction
with a simplified model of the environment (a micro-world). These simplifying
assumptions, given the difficulty of the task, are quite understandable. So the
traditional approach is centred around the belief that investigating a competence
with respect to a simplified micro-world will yield results that, by and large, hold
true when that agent is placed in the real world. General theories that underly
intelligent action can therefore be proposed by treating the agent as a detached
entity operating with respect to an environment. Crucially, this environment
is presumed to contain the intrinsic properties found in the environment that
“real” agents encounter.

This is a very broad characterisation of cognitive science and AI. Neverthe-
less, many within cognitive science see this approach as misguided and divisive,
for a number of reasons. For example, we could draw on the wealth of problems
and lack of progress traditional AI is accused of [32]. Some within AI have drawn
on this history of perceived failure to justify a new set of principles collectively
termed Embodied Cognitive Science [32], and occasionally New AI [4]. Many of
these principles can be traced back to Hubert Dreyfus’ critique of AI, 20 years
earlier [12]. The stance proposed by advocates of embodied cognitive science is
important because they refine Dreyfus’ stance, build on it, and crucially cite ex-
amples of successful engineering projects. This recasting of the problem proposes,
among others, situatedness as a theoretical maxim [11]. Taking the principle of
situatedness to its extreme, the exact nature of the environment is to be taken
as primary and theoretically significant. For example, the environment may be
partly constructed by the participation of other agents [5]. In other words, cer-
tain aspects of cognition can only be fully understood when viewed in the context
of participation [44,4]. It is important to note that this “new orientation” is seen
by many as opposing the branches of mainstream AI, or at least the branches of
AI that claim to explain cognition.

If, for a moment, we believe the advocates of embodied cognitive science,
they are telling us that any explanation for a cognitive capacity must be tightly
coupled with an understanding of the environment. What impact does this dis-
cussion have on our questions about language universals? First, it provides a
source of insights into investigating cognition through building computational
models. A theory faces a different set of constraints when implemented as a
computational model. An explanation that is grounded by a synthetic artifact
can act as a sanity check for theory. Second, this discussion admits the possi-
bility that investigating cognition without assuming the principle of detachment
can be fruitful. In the context of language and communication, the work of Luc
Steels is a good example of this approach. Steels investigates the construction of
perceptual distinctions and signal lexicons in visually grounded communicating
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robots [40,41]. In this work signals and the meanings associated with signals
emerge as a result of self-organisation.

The Evolutionary Explanation. Only humans have language. How did lan-
guage evolve? The communication systems used by animals do not even approach
the sophistication of human language, so the question must concern the evolution
of humans over the past 5 million years, since the split with our last non-linguistic
ancestor, Australopithecus [22]. Unfortunately, there is no fossil evidence offering
concrete insights into the evolution of language in humans. We can, for exam-
ple, analyse the evolution of the vocal tract, or examine skulls and trace a path
through the skeletal evolution of hominids, but the kind of conclusions we can
draw from such evidence can only go so far [27,43].

Over the past 15 years computational evolutionary linguistics has emerged
as a source of alternative answers. This approach uses computational models to
try and shed light on the very complex problem of the evolution of language
in humans [18,26]. One source of complexity is the interaction between two
substrates, each one operating on a different time-scale. More precisely, linguistic
information is transmitted on two evolutionary substrates: the biological and the
cultural. For example, you are born with some innate predisposition for language
which evolved over millions of years. The linguistic forms you inherit from your
culture have evolved over hundreds of years, and your linguistic competence
emerges over tens of years.

Much of the work on the evolution of language, particularly in the context of
computational modelling, has analysed this interaction. By modelling linguistic
agents as learners and producers of language, and then investigating how com-
munication systems evolve in the presence of both biological and cultural trans-
mission, computational evolutionary linguistics attempts to shed light on how
language could evolve from non-linguistic communities. This approach draws on
disciplines such as cognitive science, artificial life, complexity, and theoretical bi-
ology. Recent work in this field has focussed on how certain hallmarks of human
language can arise in the absence of biological change. This observation must
lead us to consider how far a biological explanation for language can take us.
For example, the very possibility of trademark features of language not being
fully explained in terms of an individual’s (biologically determined) cognitive
capacity raises important questions.

We detail this work in the next section, but raise the issue here as it impacts
on the current discussion. In explaining how and why language has its charac-
teristic structure, the evolutionary approach is in line with the claims made by
proponents of embodied cognitive science. A thorough explanation for language
universals may lie outside the traditional vocabulary of explanation, in which
case the principle of detachment will need to be breached.

2.2 Summary

This discussion has outlined the basis for asking two questions. First, what kind
of explanatory vocabulary should be invoked when explaining universal features
of language? Secondly, can situatedness shed light on this problem?
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Building multi-agent computational models allows us to analyse how cogni-
tive agents interact, specifically, what role this interaction plays in explaining the
behaviour we observe in nature. This approach serves an important purpose for
cognitive science generally, which traditionally views the individual as the locus
of study. For linguistics, being subfield of cognitive science, a multi-agent ap-
proach to understanding cognition, one which takes situatedness as theoretically
significant, is an untapped resource.

We aim to fully investigate how relevant multi-agent systems are to the ques-
tion of explaining universal features of language. This is a timely investigation.
For example, on the validity of artificial intelligence Chomsky notes “in princi-
ple simulation certainly can provide much insight” [10]. Perhaps more relevant
is the remark made by another prominent linguist, Ray Jackendoff: “If some as-
pects of linguistic behaviour can be predicted from more general considerations
of the dynamics of communication in a community, rather than from the linguis-
tic capacities of individual speakers, then they should be.” [21]. Taking these
two observations together we should at least consider the role of situatedness in
explaining the universal features of language. The next section presents recent
work on exploring precisely this question.

3 Language Evolution and Iterated Learning

The Iterated Learning Model (ILM) is a general framework for modelling the
cultural transmission of language [24,2], and is based on Hurford’s conception of
the expression/induction model [18,19]. The basis of an iterated learning model is
a series of generations. Each generation consists of a population of agents which
learn language from utterances produced by the previous generation. Each agent
represents a language user, and begins life as an infant observing the language of
adult agents in the previous generation. The agent learns from these observations
and induces a knowledge of language. After doing so, the infant becomes an adult.
Once an adult, an agent will be prompted to form utterances which infant agents,
in the next generation, observe. This process, depicted in Figure 1, is repeated
for some number of generations, typically in the thousands.

In this article we will concentrate on models which have one agent in each
generation. A simulation therefore comprises many agents, but the transfer of
information is only ever between two agents. This simplification is important, as
we first need understand the kind of linguistic structure that can be explained
in the absence of complex information transfer. An ILM is not restricted to this
one-to-one transfer: we are currently embarking on research into the impact of
population effects on language structure. In brief, the iterated learning model
allows us to see how a language evolves over time, as it passes through a repeated
cycle of induction and production. The agents themselves act as a conduit for
language, with the bias inherent in the processes of learning and generalisation
defining, in part, how language will evolve from one generation to the next.

In the ILM a language is defined as a mapping from meanings to signals.
Meanings are regarded as abstract structured entities, and modelled here as
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Knowledge
of language

Knowledge
of language

Knowledge
of language Production

Induction

Production

Induction

Production

Utterances

Utterances

Utterances

Generation 1

Generation 2

Generation 3

Fig. 1. The agents in the ILM produce utterances. These utterances are used by the
agents in the next generation to induce a knowledge of language. By repeating this
process, the language evolves.

feature vectors. Signals differ from meanings in that they are of variable length.
Signals are built by concatenating abstract symbols drawn from some alphabet.
These idealisations are consistent with Pinker and Bloom’s characterisation of
language as the “transmission of propositional structures over a serial channel”
[34]. One of the hallmarks of human language, which we will be considering in
detail, is the property of compositionality [31]:

The meaning of a signal is a function of the meaning of its parts, and
how they are put together.

Compositional languages are those exhibiting the property of compositional-
ity. We can contrast these with holistic languages, where parts of the meaning
do not correspond to parts of the signal — the only association that exists is one
that relates the whole meaning to the whole signal. Before going into the details
of the ILM, it is worth considering three examples of communication systems
found in nature:

1. The alarm calls of Vervet monkeys provide us with the classic example of a
largely innate holistic communication system [6].

2. Bird song has learned signals with elaborate structure, but the meaning
the song conveys is believed to be holistic – a structured song refers to the
meaning as whole [17].
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3. Honey bees do have a compositional communication system, but it is innate
[42].

Significantly, the only communication system that is learned and exhibits
compositionality is human language. Both compositional and holistic utterances
occur in human language. For example, the idiom “kicked the bucket” is a holistic
utterance which means died. Contrast this utterance with “large green caterpil-
lar” for which the meaning is a function of the meaning of its parts: “large”,
“green”, and “caterpillar”.

A simple2 example of a holistic language, using the formalisation of language
in the ILM, might be a set of meaning signal pairs Lholistic:

Lholistic = {〈{1, 2, 2}, sasf〉, 〈{1, 1, 1}, ac〉, 〈{2, 2, 2}, ccx〉,
〈{2, 1, 1}, q〉, 〈{1, 2, 1}, pols〉, 〈{1, 1, 2}, monkey〉}

No relation exists between the signals and the meanings, other than the whole
signal standing for the whole meaning. In contrast, an example of a compositional
language is the set:

Lcompositional = {〈{1, 2, 2}, adf〉, 〈{1, 1, 1}, ace〉, 〈{2, 2, 2}, bdf〉,
〈{2, 1, 1}, bce〉, 〈{1, 2, 1}, ade〉, 〈{1, 1, 2}, acf〉}

Notice that each signal is built from symbols that map directly onto feature
values. Therefore, this is a compositional language; the meaning associated with
each signal is a function of the meaning of the parts of that signal.

Now, at some point in evolutionary history, we presume that a transition from
a holistic to a compositional communication system occurred [45]. This transition
formed part of what has been termed the eighth major transition in evolution
– from an animal communication system to a full blown human language [30].
Using the ILM, we can try and shed light on this transition. In other words, how
and why might a holistic language such as Lholistic spontaneously pass through
a transition to a compositional language like Lcompositional?

3.1 Technicalities of the ILM

Agents in the ILM learn a language on the basis of a set of observed mean-
ing/signal pairs L′. This set L′ is some random subset of the language which
could have been spoken in the previous generation, denoted as L. That is, L′ is
the set of utterances of L that were produced. Humans are placed in precisely
this position. First, we hear signals and then we somehow associate a meaning to
that signal. Second, we suffer from the the poverty of the stimulus [35] – we learn
language in light of remarkably little evidence. For example, there is no way any
2 The languages used in the simulations we discuss are usually larger than the examples

presented here.
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Agent 1

Hypothesis
h1

Lh1

Language represented by h1

L’h1
Externalised
utterances

2

Hypothesis
h

Agent 2

Lh2

L’h2

Agent 3

Hypothesis
h3

Lh3

L’h3

Fig. 2. The hypothesis of agent 1, h1, represents a mapping between meanings and
signals, Lh1 . On the basis of some subset of this language, L′

h1
, the agent in the

next generation induces a new hypothesis h2. This process of utterance observation,
hypothesis induction, and production, is repeated generation after generation.

human language can ever be externalised as a set of utterances. Languages are
just too large, in fact, they are ostensibly infinite. This restriction on the degree
of linguistic stimulus available during the language learning process we term the
transmission bottleneck. This process is illustrated in Figure 2.

Once an agent observes the set of utterances L′, it forms a hypothesis, h, for
this observed language using a learning mechanism. In our experiments we draw
on a number of machine learning approaches to achieve this task. On the basis
of a body of linguistic evidence, a hypothesis is induced, after which an agent
is then considered an adult, capable of forming utterances of its own. Precisely
how and when hypotheses are induced will depend on the details of the ILM in
question. For example, either batch learning or incremental learning can be used.
The notion of the ILM is sufficiently general to accommodate a wide variety of
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learning models and algorithms. By interrogating the hypothesis, signals can be
produced for any given meaning. Sometimes the agent will be called to produce
for a meaning it has never observed in conjunction with a signal, and it therefore
might not be able to postulate a signal by any principled means. In this situation
some form of invention is required. Invention is a last resort, and introduces
randomness into the language. However, if structure is present in the language,
there is the possibility of generalisation. In such a situation, the hypothesis
induced could lead to an ability to produce signals for all meanings, without
recourse to invention, even though all the meaning/signal pairs have not been
observed.

With a transmission bottleneck in place, a new dynamic is introduced into
the ILM. Because learners are learning a mapping by only observing a subset
of that mapping, through the process of invention, they might make “mistakes”
when asked to convey parts of that mapping to the next generation. This means
that the mapping will change from generation to generation. In other words, the
language evolves. How the language evolves, and the possibility and nature of
steady states, are the principle objects of study within the ILM. We now consider
these two questions.

3.2 The Evolution of Compositional Structure

Recall that, from an initially holistic language, we are interested in the evolution
of compositional language. Specifically, we would like to know which parameters
lead to the evolution of compositional structure. The parameters we consider in
the discussion that follows are:

1. The severity of the transmission bottleneck, b (0 < b ≤ 1), which represents
the proportion of the language utterable by the previous generation that is
actually observed by the learner. The poverty of the stimulus corresponds
to the situation when b < 1.0. It is worth noting that natural languages
are infinitely large as a result of recursive structure. But in this experiment,
we only consider compositional structure: the languages will be finite and
therefore language coverage can be measured. Importantly, an ILM is in no
way restricted to a treatment of finite languages. We later refer to work in
which recursive structure is modelled.

2. The structure of the meaning space. Meanings are feature vectors of length
F . Each feature can take one of V values. The space from which meanings
are drawn can be varied from unstructured (scalar) entities (F = 1) to highly
structured entities with multiple dimensions.

3. The learning and production bias present in each agent. The learning bias
defines a probability distribution over hypotheses, given some observed data.
The production bias defines, given a hypothesis and a meaning, a probability
distribution over signals.

To illustrate how compositional language can evolve from holistic language
we present the results of two experiments. The first experiment is based on a
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mathematical model identifying steady states in the ILM [3,2], and the second
considers the dynamics of an ILM in which neural networks are used as a model
of learning [38]. We refer the reader to these articles if they require a more
detailed discussion.

Compositional Structure is an Attractor in Language Space. Using
a mathematical model we show that, under certain conditions, compositional
language structure is a steady state in the ILM. In these experiments the pro-
cesses of learning and generalisation are modelled using the Minimum Descrip-
tion Length Principle [36] with respect to a hypothesis space consisting of finite
state transducers. These transducers map meanings to signals, and as a result of
compression, can permit generalisation so that utterances can be produced for
meanings which have never been observed.

Primarily we are interested in steady states. A steady state corresponds to
a language which repeatedly survives the transmission bottleneck: It is stable
within the ILM. We can define language stability as the degree to which the hy-
potheses induced by subsequent agents agree on the mapping between meanings
and signals. Starting from random languages, which contain no structure, the
stability of the system will depend on the presence of a bottleneck. Without any
bottleneck in place, all languages, structureless or not, will be stable because
production is always consistent with observation. This property is in-line with
the MDL principle, which requires that chosen hypotheses are always consistent
with the observed data. Therefore, if the agent observes the whole language,
then there is never any doubt when called to express a meaning, as the signal
associated with that meaning has been observed. This is not the case when a
bottleneck is in place. Starting from a position of randomness the appropriate
signal for some meanings will be undefined, as they have not been observed. In
this situation, the system will be unstable, as generalisation will not be possible
from randomness.

A stable language is one that can be compressed, and therefore pass through
the transmission bottleneck. Compression can only occur when structure is
present in a language, so compression can be thought of as exploiting struc-
ture to yield a smaller description of the data. This is why holistic language
cannot fit through the bottleneck – it has no structure.

Ultimately, we are interested in the degree of stability advantage conferred
by compositional language over holistic language. Such a measure will reflect the
probability of the system staying in a stable (compositional) region in language
space. More formally, we define the expressivity, E of a language L as the number
of meanings that the hypothesis induced on the basis of L, which we term h,
can express without recourse to invention.

Given a compositional language Lc, and a holistic language Lh, we use a
mathematical model to calculate the expected expressivity of the transducer
induced for each of these language types [2]. We denote these measures of ex-
pressivity Ec and Eh, respectively. These expressivity values tell us how likely
the transducer is to be able to express an arbitrary meaning, and therefore, how
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Fig. 3. The bottleneck size has a strong impact on the relative stability of composi-
tionality, S. In (a), b = 0.9 and little advantage is conferred by compositionality. In
(b)-(d) the bottleneck is tightened to 0.5, 0.2, and 0.1, respectively. The tighter the
bottleneck, the more stability advantage compositionality offers. For low bottleneck
sizes, a sweet spot exists where highly structured meanings lead to increased stability.

stable that language will be in the context of the ILM. Finally, the value we are
really interested in is that of relative stability, S:

S =
Ec

Ec + Eh

This tells us how much more stable compositional language is than holistic
language. In short, the model relates relative stability, S, to the parameters
b (severity of the communication bottleneck), F , and V (the structure of the
meaning space). Figure 3(a)-(d) illustrates how these three variables interact.
Each surface represents, for a different bottleneck value, how the meaning space
structure impacts on the relative stability, S, of compositional language over
holistic language. We now analyse these results from two perspectives.

Tight Bottleneck. The most striking result depicted in Figure 3 is that for low
bottleneck values, where the linguistic stimulus is minimal, there is a high sta-
bility payoff for compositional language. For large bottleneck values (0.9), com-
positionality offers a negligible advantage. This makes sense, as we noted above,
because without a bottleneck in place all language types are equally stable. But
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why exactly is compositional language so advantageous when a tight bottleneck
is in place? When faced with a holistic language we cannot really talk of learn-
ing, but rather memorisation. Without any structure in the data, the best a
learner can do is memorise: generalisation is not an option. For this reason, the
expressivity of an agent faced with a holistic language is equal to the number of
distinct utterances observed.

Note that when agents are prompted to produce utterances, the meanings are
drawn at random from the meaning space. A meaning can therefore be expressed
more than once. Expressivity is precisely the number of distinct utterances ob-
served. When there is structure in the language, expressivity is no longer a
function of the number of utterances observed, but rather some faster-growing
function, say f , of the number of distinct feature values observed, as these are the
structural entities that generalisation exploits. Whenever a meaning is observed
in conjunction with a signal, F feature values are contained in the observation.
In such a situation, the observed meaning can be expressed, but the observa-
tion also helps to provide information relevant to expressing all meanings that
contain the F observed feature values. As a result, expressivity, as a function
of observations, will no longer be linear but will increase far more rapidly. The
mathematical model we have developed proposes a function f on the basis of
the MDL principle. Recall the parallel between the transmission bottleneck and
the situation known as the poverty of the stimulus: all humans are placed in
the situation where they have to learn a highly expressive language with rela-
tively little linguistic stimulus. These results suggest that for compositionality
to take hold the poverty of the stimulus is a requirement. Traditionally, poverty
of stimulus, introduced in Section 3.1, is seen as evidence for innate linguistic
knowledge. Because a language learner is faced with an impoverished body of
linguistic evidence, innate language specific knowledge is one way of explaining
how language is learned so reliably [7,33,35]. The results presented here suggest
an alternative viewpoint: stimulus poverty introduces an adaptive pressure for
structured, learnable languages.

Structured Meaning Spaces. Certain meaning spaces lead to a higher stability
payoff for compositionality. Consider one extreme, where there is one dimension
(F = 1). Here, only one feature value is observed when one meaning is observed.
Compositionality is not an option in such a situation, as there is no structure
in the meaning space. When we have a highly structured meaning space, the
payoff in compositionality decreases. This is because feature values are likely to
co-occur infrequently as the meaning space becomes vast. Somewhere in between
these extremes sits a point of maximum stability payoff for compositionality.

An Agent-Based Model. The results presented above tell us something fun-
damental about the relation between expressivity and learning. The model,
stripped bare, relates language expressivity to two different learning models by
considering the combinatorics of entity observation. We compare two extremes
of language structure: fully structured compositional languages and structureless
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holistic languages. In this respect, the model is lacking because human language
exhibits a mixture of both. Some utterances we use are holistic, some are com-
positional [45]. We also skirt round the question of dynamics. The model is an
analysis of Lyapounov stable states: places in language space that, if we start
near, we stay near [16].

We now briefly discuss a second experiment that addresses both these issues.
In this experiment, the dynamics of language evolution are modelled explic-
itly using an agent-based simulation, rather than an agent-based mathematical
model. Agents in this experiment are associative neural networks. This model
is an extension of a model of simple learned vocabulary [39]. Using an associa-
tive network in conjunction with learning rules used to define when activations
are strengthened and weakened in light of observations, the mapping between
meanings and signals is coded using a meaning layer, two intermediate layers,
and a signal layer. Languages exhibiting all degrees of compositionality, holistic
to compositional, and all gradations in between, are learnable by this network
[38].

The first generation of the ILM starts with a network consisting of weighted
connections, all of which are initialised to zero. The network is then called to
express meanings drawn from an environment which we define as some subset
of the meaning space. One dimension of variation over environments is dense
to sparse. This means that the set of possible meanings to be communicated
are drawn from a large proportion of the space (dense) or a small proportion of
the space (sparse). The second dimension of variation concerns structured and
unstructured environments. A structured environment is one where the average
inter-meaning Hamming distance is low, so that meanings in the environment
are clustered. Unstructured environments have a high inter-meaning hamming
distance.

Once again, the bottleneck parameter, the proportion of the environment
used as learning data, is varied. First, let us consider the case where no bottleneck
is present — a hypothesis is chosen on the basis of a complete exposure to the
language of the previous generation. Figure 4(a) depicts, for 1000 independent
ILM runs, the frequency of the resultant (stable) languages as a function of com-
positionality. Compositionality is measured as the degree of correlation between
the distance between pairs of meanings and distance between the corresponding
pairs of signals. We see that few compositional languages evolve. Contrast this
behaviour with Figure 4(b), where a bottleneck of 0.4 is imposed. Compositional
languages are now by far the most frequent end-states of the ILM. The presence
of a bottleneck makes compositional languages adaptive in the ILM. We also
note that structured environments lead reliably to compositional language.

This experiment, when considered in more detail, illustrates the role of clus-
tering in the meaning space, and the impact of different network learning mecha-
nisms [39]. But for the purposes of this discussion, the key illustration is that the
bottleneck plays an important role in the evolution of compositional languages.
In short, these results validate those of the previous section.
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Fig. 4. In (a) we see how the lack of a bottleneck results in little pressure for composi-
tional languages. In (b), where a bottleneck of 0.4 is imposed, compositional languages
reliably evolve, especially when the environment is structured.

3.3 Using the ILM to Explain Language Structure

The learning bias and hypothesis space of each agent is taken to be innately spec-
ified. Each generation of the ILM results in the transfer of examples of language
use only. In the absence of a bottleneck, compositionality offers little advantage,
but as soon as a bottleneck is imposed, compositional language becomes an at-
tractor in language space. So even though agents have an innate ability to learn
and produce compositional language, it is the dynamics of transmission that
result in compositionality occurring in the ILM. We must reject the idea that
an innate ability to carry out some particular behaviour necessarily implies its
occurrence. We aim to strengthen this claim, and refine it.

Previous work investigating the ILM has shown that linguistic features such
as recursive syntax [25], and regular/irregular forms [24] can also be framed in
this context. The idea that we can map innate properties such as, for example,
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the learning and generalisation process, the coding of environmental factors, and
the fidelity of utterance creation directly onto properties of evolved languages is
not wholly justifiable. This approach should be seen as building on Kirby’s anal-
ysis of language universals [23] in which issues such as, for example, constraints
on representation and processing are shown to bring about functional pressures
that restrict language variation. Here, we also note that the relationship be-
tween innate bias3 and universal features of language is not transparent, but
concentrate on the constraints introduced by cultural transmission.

These constraints result in certain linguistic forms being adaptive; we can
think of language evolving such that it maximises its chances of survival. For a
linguistic feature to persist in culture, it must adapt to the constraints imposed
by transmission pressures. Compositionality is one example of an adaptive fea-
ture of language.

If we want to set about explaining the characteristic structure of language,
then an understanding of the biological machinery forms only part of the ex-
planation. The details of these results, such as meaning space structure and the
configuration of the environment, are not important in the argument that fol-
lows. Nevertheless, factors relating to the increase in semantic complexity have
been cited as necessary for the evolution of syntactic language [37]. We believe
that the scope of the ILM as a means to explain and shed light on language
evolution is wider than we have suggested so far.

To summarise, by taking compositionality as an example, we argue that
its existence in all the world’s languages is due to the fact that compositional
systems are learnable, generalisable, and therefore are adaptive in the context
of human cultural transmission. This explanation cannot be arrived at when we
see the individual as the sole source of explanation. Viewing individuals engaged
in a cultural activity allows us to form explanations like these.

4 Underlying Principles

We began by considering explanations for the hallmarks of language. So far we
have investigated an agent’s role in the context of cultural transmission. In this
section we aim to tie up the discussion by making explicit a set of underlying
principles. We start by noting that any conclusions we draw will be contingent
on an innateness hypothesis:

Principle 2 (Innateness hypothesis.) Humans must have a biologically de-
termined predisposition to learn and produce language. The degree to which this
capacity is language specific is not known.

Here we are stating the obvious – the ability to process language must have
a biological basis. However, the degree to which this basis is specific to language
3 Innate bias, in the experiments presented here, refers to both the representation bias

introduced in our adoption of certain hypothesis spaces, and the hypothesis selection
policy used to select hypotheses in light of observed data.
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is unclear. We have no definitive answer to the question of innately specified
features of language [35]. Next, we must consider the innateness hypothesis with
respect to two positions. First, assuming the principle of detachment, the in-
nateness hypothesis must lead us to believe that there is a clear relation between
patterns we observe in language and some biological correlate. If we extend the
vocabulary of explanation by rejecting the principle of detachment, then the
question of innateness is less clear cut. We can now talk of a biological basis for
a feature of language, but with respect to a cultural dynamic. Here, a cultural
process will mediate between a biological basis and the occurrence of that feature
in language. This discussion centres around recasting the question of innateness,
and leads us to accepting that situatedness plays a role.

Principle 3 (Situatedness hypothesis.) A thorough explanation of language
competence would not amount to a total explanation of language structure. A
thorough explanation of language competence in conjunction with an explanation
of the trajectory of language adaption would amount to a total explanation of
language structure.

(a)

for language

Biological basis

Cpossible

(b)

for language

Biological basis

C

Cpossible

adaptive

Fig. 5. In (a), which assumes the principle of detachment, we can only make a claim
about possible communication systems. In (b), assuming the situatedness hypothesis,
an explanation accounts for the resulting communication systems which are adaptive
over cultural transmission.

The degree of correlation between a biological basis and the observed lan-
guage universal is hard to quantify. However, Figure 5 illustrates the general
point. A biological basis will admit the possibility of some set of communication
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systems Cpossible. A detached understanding of language can tell us little about
which members of Cpossible will be adaptive and therefore observed. The situat-
edness hypothesis changes the state of play by considering which communication
systems are adaptive, Cadaptive, on a cultural substrate.

Rejecting the situatedness hypothesis must lead us to consider the issue of
representation. The only way a thorough knowledge of language universals can
be arrived at, while at the same time accepting the principle of detachment, is
that universal features are somehow “represented” explicitly. How else could we
understand a universal feature of language by understanding a piece of biological
machinery? An acceptance of the situatedness hypothesis allows us to explain
a feature of language in terms of a biological trait realised as a bias which,
in combination with the adaptive properties of this bias over repeated cultural
transmission, leads to that feature being observed. However, if one accepts cul-
tural transmission as playing a pivotal role in determining language structure,
then one must also consider the impact of other factors effecting adaptive prop-
erties. But as a first cut, we need to understand how much can be explained
without resorting to any functional properties of language:

Principle 4 (Language function hypothesis.) Language structure can be
explained independently of language function.

A defence of this hypothesis is less clear cut. However, the models we have
discussed make no claims about, nor explicitly model, any notion of language
function. Agents simply observe the result of generalisation. The fact that com-
positional structure results without a model of language function suggests that
this is a fruitful line of enquiry to pursue. The treatment of language in discus-
sions on embodied cognitive science often assume language function is salient
[44], but we must initially assume it is not. The kind of cognitive processes that
we consider include issues such as memory limitations, learning bias, and choice
of hypothesis space.

4.1 The Role of Modelling

In the previous section we examined the basis for explaining language univer-
sals. The claims we made are partly informed by modelling. Is this methodology
valid? Many issues relating to language processing are not modelled. For exam-
ple, those involved in the study of language acquisition will note that our learners
are highly implausible: the language acquisition process is an immensely complex
and incremental activity [13]. It must be stressed that our models of learning
and generalisation should be seen as abstracting the learning process. We are
interested in the justifiable kind of generalisations that can be made from data,
not a plausible route detailing how these generalisations are arrived at. The out-
put of a cognitively plausible model of learning is generalisation decisions, just
as it is in our models. Rather than modelling the language acquisition process,
we are modelling the result (or output) of the language acquisition process. We
make no claims about the state of learners during the act of learning. We also
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have not addressed the role of population dynamics. The models presented here
represent a special case of the ILM, one where there is a single agent in each
generation. It has been shown that structured languages can evolve in popula-
tions containing multiple agents at each generation, given a fairly limited set of
population dynamics [20]. Extending these models to include a more realistic
treatment of populations and population turnover is a current research project.

5 Conclusions

Cognitive science has traditionally restricted the object of study by examining
cognitive agents as detached individuals. For some aspects of cognition this em-
phasis might be justifiable. But this assumption has become less appealing, and
many have taken to the idea that notions of situatedness, embeddedness, and
embodiment should be regarded as theoretically significant and should play an
active role in any investigation of cognition. Our aim is to consider this claim
by building multi-agent models, where agents are learners and producers of lan-
guage. Specifically, we aim to investigate how multi-agent models can shed light
on the problem of explaining the characteristic structure of language.

When explaining universal features of language, the traditional standpoint,
which we characterised in Principle 1, assumes that cultural context is not a
theoretically significant consideration. We attempt to shed light on the question
of how and where the universal features of language are specified. The approach
we take is in line with the intuitions of embodied cognitive science. By examining
the role of the cultural transmission of language over many generations, we show
that certain features of language are adaptive: significant evolution of language
structure can occur on the cultural substrate.

Taking the example of compositionality in language, we illustrate this point
using two models. The first model identifies compositionality as a Lyapounov
stable attractor in language space when a transmission bottleneck is in place.
The second model offers additional evidence by demonstrating that composition-
ality evolves from holistic language. The upshot of these two experiments is that
cultural transmission in populations of agents endowed with a general ability to
learn and generalise can lead to the spontaneous evolution of compositional
syntax. Related work has shown that recursive syntax and regular/irregular
forms are also adaptive in the context of cultural transmission [24]. The im-
plications of this work lead us to reconsider how features of language should be
explained. More precisely, the relationship between any innate (but not neces-
sarily language-specific) basis for a language feature, and the resulting feature,
is opaque.

We place the discussion in the context of three principles that need to be
considered when explaining features of language. First, Principle 2 lays down
an innateness hypothesis, which states that language must have a biological
basis. What form this biological basis takes is very much an open question.
Secondly, we propose Principle 3, a situatedness hypothesis which makes explicit
the claim that understanding the biological machinery behind language alone
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is not enough to explain universal features of language: cultural dynamics are
also determiners of linguistic structure. This claim constitutes the core of the
argument. Principle 4 identifies a hypothesis relating to the relationship between
language function and language structure. The idea that language function, such
as issues of communicability, has an impact on language universals is unclear.

By rejecting Principle 1 and pursuing a line of enquiry guided by Principles
2–4 we have shown that techniques from multi-agent modelling can provide
important insights into some fundamental questions in linguistics and cognitive
science. The work presented here should be seen as the first steps towards a
more thorough explanation of the evolution of linguistic structure. We believe
that multi-agent models will become an increasingly important tool in the study
of language.
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