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1 Introduction

How can we explain the origins of our uniquely human compositional system of communi-
cation? Recently there has been a resurgence of interest in this and other questions surround-
ing the evolution of human language and the origins of syntax in particular (Bickerton 1990;
Pinker & Bloom 1990; Newmeyer 1991; Hurford et al. 1998).] Much of this is due to an
explicit attempt to relate models of our innate linguistic endowment with neo-Darwinian
evolutionary theory. These are essentially functional stories, arguing that the central fea-
tures of human language are genetically encoded and have emerged over evolutionary time
in response to natural selection pressures.

In this paper I put forward a new approach to understanding the origins of some of the
key ingredients in a syntactic system. I show using a computational model that composi-
tional syntax is an inevitable outcome of the dynamics of observationally learned communi-
cation systems. In the model described, a population of simple learning mechanisms train
each other to produce utterances. The “language” in the population develops from a sim-
ple idiosyncratic vocabulary with limited expressive power and little coordination among
members of the population, to one with nouns and verbs, word order expressing meaning
distinctions, full compositionality, all the meaning space covered and complete coordination.
All this happens without any selection of learners — indeed without any biological change
— or any notion of function being built into the system.

This approach does not deny the possibility that much of our linguistic ability is geneti-
cally coded and may be explained in terms of natural selection, but it does highlight the fact
that biological evolution is by no means the only powerful adaptive system at work in the
origins of human language.

In the following section, the biological approach to explanation is outlined, and reasons
given for why we might wish to look for an, at least partial, alternative. Section 3 sets out
the computational approach, showing how the recent flurry of activity in the simulation of
populations and techniques for modelling learning can be combined to approach an ade-
quate model of this kind of evolution. After presenting the results of this model, the paper
suggests understanding the behaviour of the system in terms of the replicator dynamics of
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2 LANGUAGE EVOLUTION WITHOUT NATURAL SELECTION

generalisations. Section 6 shows how the computational model relates to linguistic theory,
including universals, frequency effects, and creolisation. The final sections examine the gen-
erality of the results and outline an evolutionary theory of learning that might be applied to
other domains.

2 The origins of syntax

In their influential paper, Pinker & Bloom (1990) argue that an analysis of the design features
of human language, and of syntax in particular, leads to the conclusion that the best way of
understanding their origins is as biological adaptations. The central questions that should
be asked in their view are:

“Do the cognitive mechanisms underlying language show signs of design for
some function in the same way the anatomical structures of the eye show signs
of design for the purpose of vision? What are the engineering demands on a
system that must carry out such a function? And are the mechanisms of language
tailored to meet those demands?” (Pinker & Bloom 1990:712)

The design features that they are interested in include: major and minor lexical categories,
major phrasal categories, phrase structure rules, linear order rules, case affixes, verb affixes,
auxiliaries, anaphoric elements, complementation, control and wh-movement. They claim
that these features of grammars — which from their perspective form part of the innate en-
dowment of humans and directly constrain the class of learnable languages — these features
work together to make “communication of propositional structures” possible. For example,
the existence of linear order, phrase structure and major lexical categories together will allow
a language user to “distinguish among the argument positions that an entity assumes with
respect to a predicate” (p. 713), suggesting that their presence in human languages requires
a biological /adaptationist explanation.

Of course, there have been many authors (see, e.g. Hurford 1998 for a recent review) who
have argued that it is useful to look at syntax as a product of natural selection — Newmeyer
(1991); Newmeyer (1992), for example, looks in detail at the features of the “Principles and
Parameters” model of syntax and gives them an evolutionary explanation. The reasons for
this are clear, as Pinker & Bloom (1990:707) point out: “Evolutionary theory offers clear
criteria for when a trait should be attributed to natural selection: complex design for some
function, and the absence of alternative processes capable of explaining such complexity.
Human language meets these criteria.”

In this paper, I will not attempt to deny the logic of this argument, nor come up with
an alternative explanation for all the design features that Pinker and Bloom list. The main
message I wish to put across is that, for at least some features of syntax, there are in fact “al-
ternative processes capable of explaining such complexity”, and that some of the qualitative
evolution of human language proceeded without natural selection. The kind of evolution we
will be looking at is not biological, but relies on a notion of languages as complex adaptive
systems just as the Pinker and Bloom explanation relies on the notion of the language faculty
as a complex adaptive system (Kirby 1998; Kirby 1997b; Christiansen 1994; Deacon 1997;
Kirby 1997a; Briscoe 1997; Gell-Mann 1992).

The particular feature of syntax that will be explored in this light — and one which sub-
sumes many of Pinker and Bloom’s list — is compositionality. Cann (1993:4) gives the follow-
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ing definition of the principle of compositionality, a universal of human language:

“The meaning of an expression is a monotonic function of the meaning of its
parts and the way they are put together.”

The Pergamon Encyclopedia gives two possible definitions of compositional:

“1. Esp. in ...phrase structure grammars, hierarchical; larger units being com-
posed of smaller units, as a sentence of clauses, a word of morphemes, etc. 2.
...of the meaning of a phrase, etc., composed of the meaning of its constituent
parts.”(Asher 1994:5104)

These definitions make clear that, although compositionality is often taken to be a property
of semantics, it is actually a property of the system that links forms and meanings. I will
define such a system as syntactic if it behaves compositionally.

3 A computational approach

If we are to fully understand the ways in which a learned, culturally transmitted, sys-
tem such as language can evolve we need some sophisticated population models of learn-
ers. Simple theorising about the likely behaviour of complex adaptive systems is not good
enough. As Niyogi & Berwick (1997) point out, our intuitions about the evolution of even
simple dynamical systems are often wrong. Recently many researchers have responded to
these problems in tackling the origins of human language by taking a computational per-
spective (for example, Hurford 1989; Hurford 1991; MacLennan 1991; Batali 1994; Oliphant
1996; Cangelosi & Parisi 1996; Steels 1996; Kirby & Hurford 1997; Briscoe 1997).

This paper follows on from this line of work, and also borrows from language learning
algorithms developed in computational linguistics (namely, Stolcke 1994) in order to see if
a significant portion of the evolution of syntax can proceed without biological change. In
some ways, this work is a logical extension of the work of Batali (1997) who simulates a
population of recurrent neural networks (Elman 1990). We will return to his work in a later
section.

3.1 Features of a desirable model

In order for it to be a successful model of the cultural adaptation of language, we need
the computational simulation to have a set of key features. These set out our minimum
requirements. In general, we wish to make the model as simple as possible initially, and see
if the complex behaviour that we are looking for emerges without extra assumptions.

1. Individuals that observationally learn. In other words, all the knowledge in the popu-
lation is learned by individuals observing other’s behaviour. In this way, as Steels’s
(1997) suggests in his review of the literature, individuals have “limited rationality” in
that they do not have direct access to each other’s internal states, nor to any structural
information that cannot be directly observed from language use.
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2. A spatially organised population of individuals. This requirement fulfils Steels’s (1997)
“distributed systems constraint” — that in these kinds of simulations, no single indi-
vidual in the population should have a complete view of the behaviour of all the other
individuals.?

3. A gradual turnover of members of the population over time. By ensuring that mem-
bers of the population are not “immortal” we can see that there is true historical / cultural
transmission of knowledge through the system.

4. No selection of individuals. In order to show that biological evolution is not a factor
in the results of the simulation, the “death” of members of the population should be
completely random and not related in any way to their success at communication.

5. Initial non-linguistic population. Those that make up the initial population should
have no communication system at all. This means that any biases that emerge in later
states of the simulation are purely a product of the agents and the population model.

3.2 Components of the model

The remainder of this section describes a simple model that fulfils the requirements listed
above. Of course, this should be considered only one of a class of potential models. A later
section considers how general the results achieved using this specific set up might be.

Some of the details of the model that might be required for replication are left to the
appendix, but the central features of the system are explored here.

3.2.1 Semantics

The semantic space in the simulation sets out what the agents will talk about. In other
words, the space defines the set of meanings that may potentially be paired with signals in
particular utterances. The meanings used in this paper are made up of an agent, patient, and
predicate part. Essentially, every meaning that the individuals will be prompted to express
will be about “who does what to whom”.

The meanings are each a triple of attribute-value pairs, one attribute for agent, patient
and predicate. The values of the first two attributes vary over five “objects”, and the value
of the predicate attribute varies over five “actions”. An extra constraint that is introduced to
make the induction simpler (see appendix) is that in no one meaning can agent and patient
be the same object. Therefore there are 100 possible meanings in this semantic space. For
example, < Agent = John, Patient = Mary, Predicate = Loves >, is a possible meaning in the
system that the individuals might want to express.

This is a very simple semantic space, of course. For example, the attribute-value notation
does not allow for recursive representations. The last section of this paper will return to this
issue and suggest what impact introducing a richer semantics might have on the system.

21t should be pointed out that this simulation fulfils only two of Steels’ three constraints fully. The system
that evolves is not completely open, since new meanings do not evolve, only new signals.
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3.2.2 Utterances

The utterances that the individuals in the simulation will use are strings of symbols taken
from the set < a,b,c,d,e >. These can be thought of as the basic phonetic gestures avail-
able to the individuals although, unlike in real speech, there are no phonotactic constraints
on combinations of gestures. There is no limit placed on the length of an utterance, and
the shortest possible utterance is one symbol long. Random utterances, on the other hand,
(which are introduced as noise or as completely novel innovations, as we shall see later) vary
between six and ten symbols in length in the simulations reported here.

3.2.3 Grammars

The knowledge of each individual in the simulation is simply a grammar that maps mean-
ings onto utterances and vice versa. The grammar formalism chosen is a probabilistic at-
tribute grammar (PAG) after Stolcke (1994). This is a context free grammar enriched with
statistical information and a way of introducing attribute-value pairs as a semantic part of
each rule. A more formal description of this type of grammar is given in the appendix, but
some simple examples are given below.

An important point to note about this representational space is that it does not bias the
simulation to natural language-like grammars. The space of possible PAG’s is huge; the vast
majority of PAG grammars are very unnatural.

Example One Imagine a language learner who heard the meaning John loves Mary ex-
pressed as “ab” twenty times and “ba” ten times. The simplest grammar that that learner
could end up with would look like:

1 ==> a [30]
2 ==> b [30]

S-->12 [20]
Agent =John
Pati ent =Mary
Pr edi cat e=Loves

S-->21 [10]
Agent =John
Pati ent =Mary
Pr edi cat e=Loves

The S symbol is the “start” symbol for the grammar. Every utterance produced by the indi-
viduals is an expansion of an S rule. The numbers 1 and 2 are arbitrary category names —in
the simulations reported here, all the category names (other than S) are arbitrary numbers.
The symbols - - > and ==> can be thought of as meaning “is made up of”, the latter being
reserved for terminals (i.e. categories that spell out phonetic gestures). So, an utterance can
either be made up of a 1 followed by a 2, or a 2 followed by a 1. Similarly, a 1 is made
up of an a symbol, and a 2 is made up of a b symbol. The number in square brackets is
the rule statistic, reflecting the amount of evidence given to that particular rule. Finally, the
equations under each Srule in this example specify the semantics for that particular rule.
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Example Two Now, imagine a different language in which John loves Mary is expressed as
“abcec” and John loves Tunde is expressed as “abddd”. A simple grammar for this language
(ignoring the statistics on the rules for simplicity), could look like:

1 ==>a

2 ==>b

3 ==>c

4 ==>d

5-->333
O=Mary

5-->44 4
0=Tunde

S-->125
Agent =John

Patient=(2).0
Pr edi cat e=Loves

Firstly, notice that there is only one Srule, but it can be used to express two meanings. This
is because there are two intermediate words ccc and ddd which themselves mean Mary
and Tunde respectively. The whole utterance is made up of a 1 (which is an a) and then a 2
(which is a b), followed by a 5 which can either expand to 3 3 3 0or4 4 4 (which, in turn
expand to ccc or ddd).

The semantics of the whole utterance is composed by taking the meaning of the O feature
of the 5 word and assigning that to the Pati ent feature of the whole utterance. The 0
feature is simply an arbitrary feature name — a placeholder for the semantic information,
if you like. (If we were to give these features and categories names instead of numbers, we
might call the category 5 “noun” and the feature O “person”.) The line Pat i ent =(2) . 0in
the semantics is what assigns Pat i ent the value of the O feature. The number in brackets
tells us which of the categories on the right hand side of the rule contains the semantic
information we need. The convention used here is that this number is an index into the right
hand side categories, starting from zero. We can think of the right hand side of the S rule
in this example as having implicit indices: 1) 2(;) 5(z). This allows us to always be able to
explicitly refer to one particular right hand side category.

3.2.4 Producer

Given a grammar, each individual must have some way of producing utterances for a par-
ticular meaning. This is actually trivial to do using standard computational linguistics tech-
niques. This simulation uses a top down, left-to-right generation algorithm. The production
is deterministic because, given two possible expansions of a category, the producer always
searches the one that has the higher statistic in the grammar. In other words, rules that have
been given more weight statistically are preferred. This means that if the grammar has two
ways to express one meaning, then only one of those ways will ever be used.
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3.2.5 Inventor

Since one of our requirements for a model is that the individuals in the initial population
have no knowledge of language, some way is needed of new forms being produced, oth-
erwise no-one would ever be able to say anything. This is where the invention algorithm
comes into play. It is based on the assumption that occasionally individuals, even though
they have no normal way in which to express a certain meaning, will nonetheless produce
some invented string of symbol.

There are different ways in which this might be done. The simplest approach is to pro-
duce a completely random string of symbols. Another possibility, suggested by James Hur-
ford, is to break down the meaning that is to be expressed into its atomic components, and
then try to “synthesise” a symbolic representation of the sum of those components, perhaps
by checking a lexicon for any matches to these atomic meanings. So, for example, if an in-
dividual was trying to express < Agent = Zoltan, Patient = Mike, Predicate = Knows >, then
Hurford’s technique would check to see if there was a way to say “Zoltan”, “Mike” and
“Knows” in isolation, and put together an utterance by combining these parts.

Unfortunately, the latter approach actually builds in the central features of syntax as we
have defined it, namely compositionality. It forces utterances to be composed synthetically
of pieces that correspond to subparts of the semantic representation. Moreover, Morford &
Oberst (1997) report evidence from post-critical period adults which, they argue, suggests
that language evolution did not proceed by the synthesis of small components into larger
syntactic units.

Given this, it would seem sensible to opt for a random invention technique. However,
this is rather unrealistic for some cases. For example, imagine that you as an English speaker
do not know the word for a new object that you have never seen before. It seems implausible
that, if you needed to express a meaning that mentioned this object somewhere in it, you
would utter a completely random string of phonetic gestures for the whole sentence.

What we need is an algorithm that does not introduce new structure into inventions, but
equally does not throw away structure that is already part of the knowledge of the speaker.
Just such an algorithm is described in the appendix. This algorithm will generate random
strings where the speaker has no grammatical structure, but for meanings that can be par-
tially expressed with a particular grammar will only randomise those parts of the string that
are known by the speaker not to correspond to expressible meaning.

3.2.6 Inducer

The most important part of the model is the grammar inducer. This allows the individuals
to build grammars on the basis of example meaning-form pairs provided to them by their
spatial neighbours in the population. What was required to make this simulation work was
a computationally cheap way of determining the most appropriate PAG which is consistent
with the input that the individual experiences. There are several ways which might be ap-
propriate suggested by the literature in computational language learning (see, for example,
Charniak 1993; Briscoe 1997 for review), but they require some form of constrained search
through a space of possible grammars. This search process was deemed too costly for the
resources available, so a different strategy was required.

Stolcke’s (1994) grammar inducer is particularly interesting to us since it works with
PAGs. Essentially, the induction algorithm works in two stages for each utterance received,
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incorporation and merging:

Incorporation On receiving a meaning-form pair, the algorithm immediately builds a gram-
matical model for that pair which makes no generalising assumptions about it.> This
is best illustrated with an example.

Input meaning: < Agent = Mike, Patient = Zoltan, Predicate = Knows >
Input form: abab

Incorporated model:

1 ==>a [1]

2 ==> b [1]

3 ==> a [1]

4 ==> b [1]

S-->1234 [1]
Agent =M ke

Pat i ent =Zol t an
Pr edi cat e=Knows

Merging Having built a grammatical model of a single utterance, the algorithm seeks to
merge this model with the existing model for any previous utterances. Stolcke achieves
this with a set of operators that make global changes to the grammar. An example of
such an operator is “category merge”. This simply takes two categories in the gram-
mar and makes them the same. Another operator is “chunk”, which takes a string of
categories and replaces them in the grammar with one category, introducing a new
rule into the grammar. There are four such operators needed in order to successfully
merge two PAGs. They are described briefly in the appendix.

In order for Stolcke’s system to be a successful inducer, the merging operators cannot
simply be applied at random. The metric that is used to direct the search through the possible
operator applications is provided by Bayesian learning theory, which formalises a trade-off
between model complexity and data fit. Informally, the best grammar is one that accounts
for the data given in the most concise fashion — essentially, the shortest grammar that still
assigns the given data set a high probability.

As noted above, this kind of search for a good sequence of operator applications is too
computationally costly for the simulations reported here. Instead, a set of heuristics have
been implemented which approximate this search for minimal grammars. Each heuristic (de-
scribed in the appendix) takes a pair of rules and compares them, looking for operators that
may be applied that will make the rules more similar. The heuristics have been constructed
in such a way that at each step they should not introduce large numbers of new grammatical
strings. For example, the left-hand side categories on two rules are not merged unless the
right-hand sides of the rules are already equivalent, and they have identical semantics. If,
when these operators are applied, these two rules become identical, then one of the rules is
deleted from the grammar.* This means that the heuristics will tend to make the grammar
shorter, hence approximating the induction process described by Stolcke.

%In the simulations reported here, induction only takes place if the hearer cannot already parse the input form.
If he can, no induction takes place, but the rule statistics are incremented once for each rule each time it is used
in the parsing operation.

4Furthermore, the statistic on the surviving rule is increased.
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Of course, the use of heuristics is a cheap and dirty way of doing induction. Discovering
successful heuristics is a laborious task and is not well motivated theoretically. Moreover,
they necessarily build in constraints on the space of possible PAGs that the inducer may ex-
plore. In the simulations reported in this paper, for example, the grammars cannot become
recursive. This is not a serious concern for us here, since the semantics of PAGs is not recur-
sive anyway. However, work is currently underway to extend the simulation to allow for
recursive semantics and an induction algorithm with search will probably be required.

A second, and more important, limitation on the induction algorithm without search
is that it requires some help in segmenting the input data. This problem is analogous to
finding the words in a string of text in an unknown language without spaces. This is not an
insoluble computational problem, of course, but it generally requires some search through
the possible segmentations. One solution to the difficulty of doing this without search is
to provide the learner with bracketed examples. In these simulations, we do not go this
far. Instead, individuals when speaking produce a “pause symbol”, that the inducer can
detect, whenever a new subtree is entered into in the generation process. As we shall see,
in the initial stages of the simulation, these pauses have no effect, because all the grammars
are completely flat. However, later on, when words are discovered by the population, they
greatly simplify the job of the inducer.

3.3 The simulation loop

Given a computational model of an individual — made up of an inducer, a producer, and
an inventor — we need to set out the ways in which a population of individuals interacts.
The population in the simulations reported here is made up of ten individuals at any one
point in time, organised in a ring. In other words, each member of the population has two
neighbours. This is a simple way of modelling the spatial organisation that was mentioned
in section 3.1.

Figure 1 and 2 show how this population is updated over time. The most important
features of these two flowcharts are:

e Each individual learns only from utterances (form-meaning pairs) produced by its
neighbours.

e The makeup of the population changes over time.
¢ Individuals are replaced entirely at random.

e The probability that one individual will hear all forms for all the possible meanings is
vanishingly small.?

4 Results

This section looks in some detail at one particular run of the simulation described above.
The behaviour of the simulation is consistent from run to run, so a careful analysis of one
case is worthwhile. Any points of variability across runs are pointed out when they arise.

SThere are 100 different possible meanings, and a maximum of 100 utterances heard by each individual. Even
if an individual is lucky enough to hear 100 utterances in its lifetime, the chances that these will cover the entire

. !
meaning space are 1.
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Figure 1: The main loop used in the simulations.
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Figure 2: The flowchart for each utterance. “P” and “Q” are random numbers chosen be-
tween zero and one. They simulate the effect of noise and occasional innovation respectively.
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is a string of symbols.
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The initial population is made up of ten individuals, all of which have no knowledge of
language — that is, they have zero grammars. The simulation loop described in figures 1
and 2 is then initialised and left to run until the behaviour of the population stabilises (after
several thousand generations). Periodically, various measures of the population’s behaviour
and knowledge are taken:

1. Meanings The number of meanings that an individual can express (without inven-
tion).

2. Size The number of rules in an individual’s grammar.

3. Coverage The average statistic on all the top level rules in the grammar. (This gives
some measure of the generality of the grammar, since coverage is maximum when one
top level rule is used for all utterances.)

4. Grammars The actual grammars of the individuals in the simulation can be directly
inspected.

A graph of the population average of the first three of these measures over a run of half a
million cycles through the simulation is given in figure 3.

The graph has been partitioned into three stages between which the population appears
to make “phase transitions” into radically different types of behaviour. In particular, the
relationships between the three measures graphed and also the structure of the grammars
changes radically at these points. These stages are present in every run of the simulation,
although the timing of the transitions is variable.

4.1 Stagel

In the first few generations® of the simulation run nothing much happens. No individual
in the population has any grammar, so they have no way of producing utterances. Each
time an individual is asked to produce a string for a particular randomly chosen meaning,
they consult their grammar and discover they have no way of producing a string so they
say nothing. Consequently the new individuals have no exemplars for acquisition and also
end up with zero-grammars. Recall, however, that there are occasional random invention
and noise events. Whenever one of these occurs, the new agent has something to internalise:
a pairing of a randomly constructed string of symbols, and a randomly chosen meaning.
Then, if this individual is later called upon to produce an utterance with that meaning, that
same string of symbols will again appear in the input of a new learner.

This process of random invention and re-use leads to the situation that is stable through-
out the first emergent stage in the simulation. The population can express only a small
percentage of the meanings, using a small grammar which, nonetheless, has more rules than
expressed meanings. A typical grammar drawn from a random individual at this stage in
the simulation is shown in figure 4. We can understand this grammar as a simple vocabulary
list for 11 of the possible 100 meanings. The first five rules in the grammar simply assign the
tive possible “phonetic” gestures (the letters a to e) arbitrary category labels. The remaining

61 will use the term generation for convenience here to refer to one circuit of the outer loop in figure 1. A
complete turnover of the population would in fact take at least 10 generations.
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Figure 3: The population average of size, meanings and coverage over 500,000 sentences,
where a “sentence” is an instruction to a speaker to produce a random meaning. Each new
agent is exposed to 100 such sentences (although some may be silent if the speaker does not
know how to express a particular meaning). The graph is divided into three stages signifying

major “phase changes” in the grammars of the population.
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6 ==> e [39]
2 ==> a [34]
3 ==>d [27]
5 ==> b [26]
15 ==> ¢ [21]

S-->61531562 25332
Agent =John
Pat i ent =Zol t an
Pr edi cat e=Hat es

(3l

S-->2325665
Agent =Mary
Pati ent =Zol t an
Pr edi cat e=Fi nds

[2]

S-->6 [2]
Agent =Zol t an
Pati ent =M ke
Pr edi cat e=Hat es

S-->2325251515156 152 3 155 15 6
Agent =Mary
Pat i ent =Tunde
Pr edi cat e=Hat es

S-->332355552566326©6F6
Agent =Mary

(1]

Pat i ent =John
Pr edi cat e=Hat es

S-->23335315156 2 2
Agent =M ke
Pat i ent =Mary
Pr edi cat e=Hat es

(1]

S-->2521533356
Agent =Mary
Pat i ent =Tunde
Pr edi cat e=Loves

(1]

S-->2156255156662566 2
Agent =John
Pati ent =Mary
Pr edi cat e=Fi nds

(1]

S-->1566265665156152536F6
Agent =Mary
Pati ent =Zol t an
Pr edi cat e=Hat es

S-->156232662556
Agent =John

[ 1] Pati ent =Zol t an
Pr edi cat e=Fi nds

[1]

S -->3 [1]
Agent =Zol t an
Pat i ent =John
Pr edi cat e=Hat es

13

(1]

Figure 4: A typical grammar from stage I. It is essentially a simple, idiosyncratic vocabulary
with one word for each complex meaning, and limited expressive power.



14 LANGUAGE EVOLUTION WITHOUT NATURAL SELECTION

S <Agent=John, Patient=Mary,
Predicate=Finds>

2 15 6255 1566 625662
| | Lo B
a eabb cee eabeea

I
C

Figure 5: A stage I phrase structure tree showing the utterance “aceabbceeeabeea” meaning
John finds Mary. Note the complete flatness of the structure.

11 rules act like a dictionary mapping meanings such as John finds Mary’ directly onto strings
of categories (such as 2156 2 5 ...) and therefore onto a string of symbols. The structure of
an utterance for this individual is expressed as a tree in figure 5.

The language at this stage in the simulation is clearly fairly impoverished since only a
small portion of the meanings can be expressed. Furthermore, each utterance seems to be
completely idiosyncratic. For example, John hates Zoltan is expressed as ecdceaabdda, whereas
Zoltan hates John is expressed as d.

4.2 Stage Il

The second stage in the simulation results is marked by a sudden change in the population
measures. The number of meanings covered increases dramatically as does the size of the
grammar. More importantly, the number of meanings becomes greater than the number of
rules in the grammar. It is clear from this that the language is no longer simply behaving as
a list of unanalysed vocabulary items for complex meanings as it was in stage I.

In fact the grammars at this stage are far more complex and byzantine than the earlier
ones. Figure 6 shows one such grammar. The details of what is going on in the language
of this individual are hard to figure out. There are, however, a few points that should be
noted. Firstly, there are now “intermediate” syntactic categories. There are categories for
each of the basic symbols a to e as before, and also the top level category S — but there
are also categories that rewrite to other categories. Importantly, some of these intermediate
categories, or words, have a semantics of their own.

There are only a few of these words for atomic meanings, and they are not consistently
given one particular syntactic class. So, although the category 107 expands to ce, ed and aa,

"Here I am using the English sentence John finds Mary as a short-hand for the feature-attribute structure
< Agent = John, Patient = Mary, Predicate = Finds >.
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=> a |13

a[127)

e [117]
149 --> 4 [52]
11=Mary

9

=> ¢ [47)

5 ==> b [45]
148 --> 17 [36]
200 --> 5 [29]

107 --> 9 4 [25]
ohn

107 --> 4 2 [19]
0=Mary

173 --> 17 17 [16]
12=Tunde

147 --> 2 2 [12]

107 --> 17 17 2 [7]
=Tunde

S --> 290 107 148 148 2 [5]

Predi cat e=Fi nds

S --> 290 107 148 149 (5]

Predi cat e=Fi nds

-> 149 107 107 [4]

4

S--> 149107 222 [4]

Agent=(1). 0
Pat i ent =zl tan
Pr edi cat e=Knovs

S-->299 148 148 9 148 148 9 2 107 148
Agent=Zol tan
Pati ent =(10). 0
Predi cat e=Hat es.

S --> 149 148 149 107 [2]
Agent =M ke
Patient=(3).0
Predi cat e=Hat es

S --> 149 2 149 2 149 2 2 290
(2]

Predi cat e=Fi nds

S --> 290 290 2 173 149 149 17 107 290 (2

S-->9107 147 2 [2]

Figure 6: A typical grammar from stage II. It has some words for atomic meanings and some
compositionality, but no regular word classes or word order.

unde
Predi cat e=Loves

§-->22 1A9 290 2 149 2 107 149 290 2 [2]
Agent

Pr edi cat e=knows

--> 148 107 147 2 [2]
no

Predi cat e=i u es

S --> 290 17 290 17 290 173 9 173 173 2 2 90 [2]

Pati ent =Tunde
Pred cat o-Loves

S -->9 107 149 290 9 [1]
Agent=(1).0

Pati ent =Tunde
Predi cate=Loves

S --> 148 147 2 107 [1]
Agent =Tunde
Pati ent =(3)
redt cat oot ke

S --> 290 149 2 107 [1]
1).11

Pati ent=(3). 0
Predi cat e=Fi nds

S -->2 107 147 2 11
Agen! i

Pati ent
Predi cat e=} ans

S -->2 148 149 2 149 [1]
ke

Pati ent
Predi cat e=Loves.

S --> 149 149 2 148 149 [1]
Agent

Pati ent =M ke
Predi cat e=Hat es.

S-->22 148 148 2 290 2 [1]
nt =Tunde

Pati ent =Zol tan
Predi cat e=knows

S-.> 29017 149 173 2 (1
Agent

ai
Predi cat e=Fi nds

S -->290 147 2 149 2 [1]
Agent =Tunde
Pati ent
Pr edi cat e=Fi nds

>2221732173 22 107 17 [1]
Agent
Pati ent

Predi cat e=Hat es

S --> 149 149 9 147 2 [1]
Agent

y
Pati ent =zol tan
Predi cat e=Loves.

-->217 149 173 2 [1]
ke

3).12
Pr edi cat e=knovs

--> 149 147 290 290 [1]
ke

Predi cat e=Li kes

$ - 2149 149 149 149 147 149 147 149 2
Agent =Zol tai
Pat ent M ke
Pr edi cat e=Hat es

S -2 200 107 2 149 [1)
.0

Agent
Pt ot b ke
Predi cat e=Fi nds

S-->2149 21732 [1]
Agent=(1) 11
Patient=(3).
rect car soknons

> 149 173 2 2 149 [1]
ent=(1). 12

Ag!
Pati ent =M ke
Predi cat e=Hat es

> 147 107 5 5 [1]
1.0

Predi cat e=Fi nds

$-->2173217 2 2 149 2 173 [1]
ol tan

Pati ent =(6) . 11
Predi cat e=Knows

Sl U 22 1)

Agent
Partont zm tan
Predi cat e=knows

S-->21732 17 149 (1]

Predi cat e=knows

22k 2 107 1
nt=(1)

3) u
Predi cat e=knows

S-:> 2149 217 149 (1)

Predi cat e=knows

>517 51753929392 149 25 [1]

8).11
Pr edi cat e=Loves
302 > 17 17 [1]

S-->1717 4 147 2 [1]
Agent =M ke
Pati ent =Tunde
Predi cat e=Li kes

S-->22173259 [1]
Agent=(2). 12
Pat i ent =Zol tan
Predi cat e=Loves

S-->217 4107 [1]
Agent =M ke
Patient=(3).0
Predi cat e=knows

S-->9173 2 107 [1]
1).12

3).0
Pr edi cat e=Loves

(1]

15
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S <Agent=| | ,Patient=Tunde,
Predicate=Knows>

| |
! /\ /\ !
9 4 2 2

Figure 7: A stage II tree showing “dceddd” meaning John knows Tunde.

meaning John, Mary and Tunde respectively, there is another category (149) that means Mary
and also another one (107) for Tunde. There is no word for Mike or Zoltan, nor are there any
words for any of the actions. These few words are utilised by some of the top level rules to
hierarchically compose the meaning of the whole. So, dceddd means John knows Tunde because
the ce near the start of the string means John. The tree for this sentence is shown in figure 7.
In summary, the languages of this stage in the simulation have some words for atomic
meanings, and some compositionality, but no regular word classes or word order.

4.3 Stage III

After a second “phase transition”, the population switches into a third and final stage. The
simulation has been tested on very long runs, and no significant changes occur in the pop-
ulation’s behaviour after this point. The transition is marked by a sudden increase of the
number of meanings that can be produced to the maximum value; a drop in the size of the
grammars; and a large increase in the coverage measure. This last change suggests that the
average generality of the top level rules in the grammar has increased enormously.

If we look at the grammar in figure 8 we can see a stark contrast with the grammars
of stage II. Most strikingly, there is only one top level S rule that is used to express all the
meanings in the language. This rule makes no mention of actual objects or events in its
semantics. The semantics at the top level is entirely composed from the semantics of the
categories on the right hand side of the rule, which is part of the reason that this rule can
be so general as to cover every utterance in the language. The S rule is also very concise,
consisting of only three categories on its right hand side, a 66 and two 62s.

Turning our attention to these lower level categories, we can see that every atomic mean-
ing (i.e. all the objects and all the actions) has one (and only one) word. These words are
all only two symbols long, which, given the constraint on the symbol inventory that the
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2 ==> ¢ [205]

3 ==> e [167]

10 ==> a [120]

4 ==>d [108]

S -->66 62 62 [100]
Agent=(2).0
Patient=(1).0
Predi cate=(0). 4

62 --> 3 2 [49]
O=Nary

62 --> 2 10 [40]
0=Zol t an

62 --> 10 4 [39]
0=M ke

62

62

66

66

66

66

66

-->2 2
O0=Tunde

--> 4 3
0=John

--> 10 3
4=Lj kes

-->2 3
4=Loves

-->33
4=Knows

--> 4 10
4=Fj nds

-->2 4
4=Hat es

[ 38]

[ 34]

[ 24]

[ 22]

[19]

[ 18]

[ 18]

17

Figure 8: A typical stage III grammar, with highly regularised syntax, nouns and verbs,

fixed word order, and full compositionality.
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S <Agent:|:|,Patient: D,Predicate:D >

66 <Loves> 62 <Mdry> 62 <fohn>

2 3 3 2 4 3
| | | | | |
C e e C d e

Figure 9: A stage III tree showing “ceecde” meaning John loves Mary.

individuals have, turns out to be the shortest that the words can be and still cover all ten
atomic meanings. Interestingly, although the languages of the previous stages used all five
symbols a to e, this language has dropped the b symbol. The four symbols that are left are
the minimum number required to encode ten meanings with words that are two symbols
long.

Furthermore, all the objects (Mary, Zoltan, Mike, Tunde and John) belong to the same syn-
tactic category (62) and all the actions (Likes, Loves, Knows, Finds and Hates) belong to a sec-
ond category (66). In other words, this language encodes a classic noun/verb distinction
syntactically.

The language is a VOS language in that the verb is the first word in the sentence, and the
semantic roles of the two following nouns is determined by word order such that the first
noun is the patient and the second is the agent. Figure 9 shows the tree structure for John
loves Mary in this language. The emergent ordering differs from run to run, but the general
pattern is the same: a noun/verb distinction encoded in the lexicon with the agent/patient
distinction encoded by word order.

Although the result of this run is full compositionality, in that the sentence rule does not
add any atomic semantic content, this is not always the case. Occasionally, one of the atomic
meanings does not become lexicalised as a noun or a verb, and an idiosyncratic sentence rule
is used to express meanings that include the missing word. We will return to the reasons for
this later.

4.4 Summary of the results

What we have seen in this run, and in every run of the simulation that has been attempted,
is the emergence of simple, yet language-like, syntax from randomness in a population that
is not constrained to learn only a syntactic language.

The communication system of the population quickly emerges from nothing as an im-
poverished, idiosyncratic vocabulary of one-word utterances, nothing more than an inven-
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tory of calls expressing unanalysed meanings. This system is passed on only “culturally”
through observational learning by new individuals, and there is nothing else inherited by
later generations from earlier ones.

Eventually, after many generations, the system that is used to express meanings balloons
in complexity. Utterances are no longer unanalysed strings of symbols. They are made up
of common chunks of several symbols. Some of these chunks even have meanings of their
own, although they are not regularly used to signify these meanings in a larger context. The
language of the population now goes through radical and unpredictable changes over time
as the range of meanings that are readily expressible changes wildly. The language appears
to be brittle in some way and liable to break and lose its expressive power suddenly.

At some point, all this changes, and the population converges on a simple system, a syn-
tactic system. Now, every sentence is made up of nouns and verbs (drawn from a concise
lexicon lacking synonymy and homonymy) in a fixed order which encodes meaning distinc-
tions compositionally, and every possible meaning can be expressed.

From this point forward, the language is stable. The perturbations in the coverage mea-
sure in figure 3 are due to the occasional “noisy” example that is learned by a new agent as
an idiosyncratic, idiomatic form. These forms do not persist, however? and the language
always returns to its previous state.

5 Why does this model work?

The individuals in the simulation simply observe each others’” behaviour and learn from
it, occasionally inventing, at random, new behaviours of their own. From this apparent
randomness, organisation emerges. Given that so little is built into the simulation, why is
syntax inevitable?

To answer this question, we need to understand how the languages of the individuals in
the population change over time. Language exists in two forms both in the simulation, and
in reality (Chomsky 1986; Hurford 1987; Kirby 1998):

I-language This is (internal) language as represented in the brains of the population. It is
the language user’s knowledge of language. In the simulation, the I-language of an
individual is completely described by its PAG.

E-language This is the (external) language that exists as utterances in the arena of use (Hur-
ford 1987). In the simulation, we can describe E-language by listing the form-meaning
pairs of an individual.

These two types of language are clearly made of very different stuff, but influence each
other in profound ways. E-language can clearly be seen as a product of the I-language of
speakers. However, the I-language of language learners is a product of the E-language
that they have access to (see figure 10). Two different I-languages can produce the same
E-language. For example, in the simulation two I-languages can differ in their choice of
intermediate category numbers, but still produce/parse exactly the same set of strings. Sim-
ilarly, two different E-language experiences can still lead to the same I-language in a learner.
Nevertheless, meaningful change does occur. To put it another way, a particular I-language
or E-language can fail to persist from one point in time to another because the processes that
map from one form to the other and back again are not necessarily preservative.

8Although, see the section on frequency, below, for an interesting counter-example.
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I-Language I-Language
v v
B Acquisition L
Product&\ /Prodt@x e ’
E-Language E-Language
o
Time

Figure 10: The cycle of language acquisition and use, which maps I-language objects to E-
language objects and vice versa. These transformations act as bottlenecks for the information
flowing through the system. For a particular feature of language to survive over time, it must
be faithfully preserved through these mappings.

We can divide up I-language into units — replicators — that may or may not persist
through time. There are many ways in which we can do this: for example, we could see
the entire I-language as a replicator, or a particular symbol as a replicator. As long as we
can identify the units” success or failure to persist over time, it is useful to think of them in
this way. Clearly which types of I-language persist over time is related to the success of the
replicators that make up those languages. In other words, the languages which are more
easily transmitted from generation to generation will persist.

In the model described, what size of replicators should we look for, and what determines
their success? Here it is useful to introduce a notion of competition into the picture. It
turns out that within a population, certain replicators actually compete for survival. That
is, the success of one must be measured relative to the success of others in the population
at that time. These competing replicators are those rules which potentially express the same
meaning. If there are two ways of saying John loves Mary, then on a particular exposure to
this meaning, the learner can obviously only hear one of them. Therefore, on one exposure,
only one of the rules (or, more properly, set of rules) that can be used to express John loves
Mary has a chance of being induced by the learner.

At face value, it would seem that the two competing rules (or rule-sets) will have an
equal chance of being the one chosen for producing the meaning, so the replicative success
of all rules in a language should be equal. This would be true if each rule only ever expressed
one meaning. However, if one rule can be used to express more meanings than another, then,
all other things being equal, that rule will have a greater chance of being expressed in the
E-language input to the learner. In this case, the more general rule is the better replicator.

For a more concrete example, consider a situation where, in the population of I-languages,
there are two competing rules. One is a rule that expresses John loves Mary as an unanalysed
string of symbols — essentially as one word. The other rule expresses John loves Mary as a
string of symbols, but can also be used to express any meaning where someone loves Mary.
So, the latter rule can also be used to express Zoltan loves Mary and so on. Further imagine
that both rules have an equal chance of being used to express John loves Mary. The more gen-
eral rule is still a better replicator, because for any randomly chosen set of meanings, we can
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expect it to be used more often than the idiosyncratic rule. Its chances of survival to the next
generation are far more secure than the idiosyncratic rule. Furthermore, even if both rules
are acquired by a particular hearer, the statistic associated with the general rule is likely to
be higher. This means that, when it comes to the point when the hearer needs to say John
loves Mary, the more general rule will probably be employed.

Of course, the more general rule will not be learned as easily as the idiosyncratic rule.
In the simulations described above, an idiosyncratic pairing of one meaning to one form
takes only one exposure to learn, but the most general rule takes several. However, the
idiosyncratic rule only covers one meaning, whereas the most general rule covers 100. It is
clear, therefore, that the probability of a acquiring a particular rule given a random sample
of meanings increases with the generality of that rule. The success of I-languages which
contain general rules seems secure.

The picture that emerges, then, is of the language of the population acting as an adap-
tive system (Gell-Mann 1992; Kirby 1998; Kirby 1997a) in its own right. Initially, the rules
are minimally general, each pairing one string with one meaning. At some point, a chance
invention or random noise will lead a learner to “go beyond the data” in making a gener-
alisation that the previous generation had not made. This generalisation will then compete
with the idiosyncratic rule(s) for the same meaning(s). Given that generalisations are better
replicators, the idiosyncratic rules will be pushed out over time. The competition will then
be replayed amongst generalisations, always with the more general rules surviving,.

The inevitable end state of this process is a language with a syntax that supports compo-
sitionally derived semantics in a highly regular fashion. The grammar for such a language
appears to be the shortest (in terms of numbers of rules) that can express the entire meaning
space. The shorter the grammar, the higher the generality of each of the rules — the shortest
grammar that can still do the job of expressing meanings is therefore the one made up of
optimal replicators.

6 Linguistic adaptation as a theory for the origin of language

The previous sections have demonstrated an idealised model of a population of learners and
shown that compositional syntactic systems are attractors in the space of possible languages.
It has been argued that languages are behaving as adaptive systems through a process of
competitive replication of generalisations. This section assesses the importance of this result
for linguistic theory.

6.1 Constraints on variation

As mentioned in the introduction to this paper, the theory put forward here is an alterna-
tive to the standard approach which places central importance on an innate, constraining
language acquisition device. At this point it is useful to unpack exactly what the differences
are between these two perspectives on the origins of syntax. In particular, the relationship
between the model of the acquirer and constraints on cross-linguistic variation are quite dif-
ferent.

Traditionally, the Chomskyan language acquisition device (LAD) directly constrains what
makes a possible human language by limiting directly what can or cannot be acquired.
This limit is said to closely map the observed constraints on variation (Hoekstra & Kooij
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€DN

Figure 11: Two venn diagrams showing the different approaches to explaining observed
constraints on cross-linguistic variation. E is the set of all logically possible languages, the
gray area signifies the set of occurring human languages. In the top diagram, the Chomskyan
language acquisition device constrains the learner directly and nothing else is required to
explain the limits on variation. In the bottom diagram, the language learning device is less
constraining, and the particular characteristics of human languages are the end result of a
historical evolution of languages in populations (represented by arrows).

1988). Part of the generative research program involves accounting for variation between
languages explicitly within the model of the language acquirer. In fact, Universal Grammar
(UG) and the LAD are often treated as synonymous within this tradition. It is not generally
considered that the dynamics of language acquisition and use impose further constraints
within the boundaries imposed by the structure of the LAD (although see (Niyogi & Berwick
1995; Clark 1996) for interesting exceptions).

Figure 11 contrasts this view with that proposed in this paper. The language learning de-
vice clearly does impose constraints directly in a similar fashion — there are certain types of
language that the learner simply cannot acquire — however these constraints are far less se-
vere than those imposed by the LAD. As can be seen in the first two stages of the simulation,
very un-language like systems can be acquired by this learner. The constraints on variation
are not built into the learner, but are instead emergent properties of the social dynamics of
learned communication systems and the structure of the semantic space that the individuals
wish to express.

The theory presented here gives us a neat explanation of why human languages use
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syntactic structure to compositionally derive semantics, have words with major syntactic
categories such as noun and verb, and use structural relations (such as word order) to encode
meaning distinctions. However, it does not seem to allow us to understand more specific
universals. For example, particular constituent orders are far more frequent than others
across the languages of the world (Hawkins 1983; Dryer 1992).

Perhaps the best explanation for these types of universal should look at the effect of
parsing and generation in the transmission of replicators (see Kirby 1998; Kirby 1997a for
details). On the other hand, at least some of these word order constraints may eventually
be explained in terms of linguistic adaptation without appealing to processing (see, Chris-
tiansen 1994; Christiansen & Devlin 1997 for some suggestions along these lines). X-bar
theory — a sub part of UG which constrains the structure of syntactic trees cross categorially
(Jackendoff 1977) — has been implicated in various word order universals. Daniel Nettle
suggests that X-bar is just the sort of over-arching generalisation that the theory put forward
in this paper predicts. It can be characterised as a pair of phrase structure rules:

XP — Spec X' or XP — X' Spec
X' —-XYP or X' —-YPX

These rules are like standard context free rules except that X and Y are variables that can
range over the lexical categories in the language.

This use of variables in phrase structure rules is not possible with the PAG formalism,
so this result is not possible in the simulation. Nevertheless, if the language learning device
were able to make a generalisation such as that expressed by X-bar, we would expect it
to thrive as a replicator. More generally, we should expect languages to behave in such a
way that their word orders can be expressed in the most compact way, since this will reflect
the behaviour of the optimal, most general, replicator. Dryer (1992) shows with a large-
scale cross-linguistic survey, that this is indeed the case; languages tend to order their non-
branching nodes on the same side of their branching nodes across the phrasal categories of
the language.

6.2 Frequency effects

If the emergence of compositionality is due to the differential success of competing repli-
cators, we can make an interesting prediction about the effect of frequency of meanings on
the evolution of the languages in the simulation. Recall that the success of a replicator is
related to the probability it will show up in the input E-language of a learner. This suggests
that if a particular meaning is expressed particularly frequently by speakers, any rule that
contributes to the production of a string for that meaning will be a good replicator.

We have argued that the emergence of compositionality in the languages of the popula-
tion is due to compositional rules forcing out idiosyncratic rules, because idiosyncratic rules
are employed in a relatively small portion of E-language. However, if one meaning is par-
ticularly frequent, and if the theory of replicator dynamics is correct, then we should find
that an idiosyncratic form for a frequent meaning should survive longer than one for an
infrequent meaning.

To test this, the simulation was run again, but the maximum number of utterances pro-
duced was doubled to 200, and approximately half of all the utterances had the meaning
John loves Mary. In other words, at each point in time, there was a 50% chance that a speaker



24 LANGUAGE EVOLUTION WITHOUT NATURAL SELECTION

would be asked to produce a string for this one meaning. This makes John loves Mary far
more common than the other 99 possible meanings.

The results of such runs are consistent with the hypothesis that it is replicator dynamics
that is driving the evolution of language in the simulation. In stage I of the simulation, all
complex meanings are expressed non-compositionally as one word sentences, and the utter-
ance for John loves Mary is no exception. The difference at this stage is that every individual
has a word for this meaning, whereas the other meanings are only sparsely covered.

In stage II completely non-compositional rules are rare and do not survive from genera-
tion to generation. However, every individual with few exceptions still has a non-compositional
rule for John loves Mary. In other words they have a rule of the form:

S --> <sone string of categories>
Agent =John
Pati ent =Mary
Pr edi cat e=Loves

Finally, even in stage III, where typically all idiosyncratic rules are eliminated, and the
grammar becomes completely compositional, an idiosyncratic form for John loves Mary can
survive, although in some runs it is eventually eliminated.

These results strongly suggest that the correct analysis of the behaviour of the system
is in terms of the relative success of rules as replicators. It is also possible that in natural
language there are some examples of frequency affecting the compositionality of forms. For
example, in morphology, suppletive forms tend to correlate with highly frequent meanings.
So, for example, the past tense form of the frequent verb, go is the non-compositional went
not goed. The ordinal versions of the English numbers after three are compositional — third,
fourth, fifth etc. — but the more frequent first and second are not.

6.3 Creolisation

The discussion in this paper so far points to a historical emergence of compositional syntax
in language as opposed to a biological one. It has been argued here that this central feature
of human language is not a biological adaptation but a response of adaptation by languages
themselves to the pressures imposed by the mapping from I-language to E-language and
back again.

The distinction between the two views can be highlighted by a thought experiment.
Imagine that some virus spreads through an isolated community on some remote island
that removes people’s ability to communicate with each other, and that this illness is viru-
lent in the population for several generations. Children born into this community would
be deprived completely of linguistic input, and eventually the island would be populated
solely by people who had never been exposed to any language. After the virus has passed
what happens to the population?

If we were to take the innatist stance, we would say that the damage would be short-
lived. Even the generations of children born into silence preserve information about the
syntactic nature of human language intact in their genomes which they pass on to the next
generation. However, if we consider syntax to be a historically emergent property, then the
imaginary situation is just like the initial stages of the population in the simulation — it will
take many hundreds of generations to repair the damage.
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A thought experiment such as this is useful in setting out the differences between two ap-
proaches, but it also seems to have historical parallels that could cause serious problems for
this theory of the origin of syntax. Bickerton (1981) describes cases where a pidgin language
is formed as adults from varied linguistic backgrounds are forced together (for example, as
plantation slaves). This type communication system, Bickerton claims, is best described as
a protolanguage rather than a full-blown language, and at least in its earliest incarnation has
no syntactic structure at all. In certain cases, according to Bickerton, the pidgin spoken by
the adult community has been transformed in one generation by the child population into
a creole language which has a syntactic system as rich as any normally occurring human
language.

At least with respect to the syntactic structure of language, this seems to be similar to
the thought experiment outlined above. If children in a population of pidgin speakers can
innovate syntax in one generation (and see Senghas 1995 for some excellent evidence that
this is indeed what is happening) then this suggests that syntactic structures must be innate
rather than an emergent property of language transmission over time. To put it another way,
if the individuals in our simulation were put in an environment without syntax, we might
expect them to take hundreds of generations to achieve a syntactic language again, just as
it does at the very start of the simulation. If this is true, then it weakens the case for syntax
being a historically emergent property.

To test this, we need some way of simulating a pidgin environment for the first gener-
ation of learners in the simulation. A protolanguage for the semantics we use would have
vocabulary items for the atomic meanings such as John and loves, but not encode meaning
distinctions such as agent vs. patient using structural cues. A simple way of doing this is
to set up a vocabulary of atomic meanings, and each time a protolanguage utterance for a
complex meaning is needed, randomly order the words for each of the atomic components
of that meaning. So, if John is ba, knows is ee, and Zoltan is cb, then the utterance meaning
John knows Zoltan could be baeecb, bacbee, eebacb, eecbba, cbbaee or cbeeba. Critically, the set of
possible pidgin utterances for Zoltan knows John will be exactly the same.

No claims are made here that this is how a real pidgin would encode these meanings.
Instead, this protolanguage has been set up to model, in the simplest way possible, a system
that has a vocabulary but no structural cues to meaning. With the simple semantics of the
simulation, the expressive power of the pidgin is impoverished because there is no way of
expressing the distinction between agent and patient.?

A simulation was run that was identical to the one described in section 4 except that the
initial population was exposed to the artificial protolanguage described above. The results
are radically different. Recall that the simulation with no initial language took hundreds of
generation to achieve a language that reliably encoded the agent/patient distinction. With
an initial “pidgin” input, on the other hand, a language emerges that manages this before
even one complete turnover of the members of the population. The only S rule in this lan-
guage is shown here:

S --> 59 44 59 [100]
Agent=(2).3
Patient=(0).3

This simulated pidgin looks a bit like a free word order language. The critical difference is that a free word
order language for this semantics would have some other means of coding the difference between agent and
patient, by using some kind of case marking for example.
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Predicate=(1).0

(44 is the category for verbs and 59 is the category for nouns.)

Clearly, this is an extremely simplified model of what is going on in creolisation. In
particular, given the limited semantic space available to the simulation, it is very difficult
to realistically model protolanguage. However, the results suggest that the relatively un-
constrained learners in the population and the limited structure inherent in the pidgin are
enough together to get the population rapidly to innovate a syntactic system that is not in
the input data. We should be very careful, therefore, before we use the evidence from creoles
to posit a highly constraining innate language faculty.

6.4 How general is this result?

It has been argued that syntax as a compositional mapping between forms and meanings
is an emergent property of observationally learned communication systems. However, this
argument uses the results from a highly idealised simulation of language learning and use,
which raises the question of whether we should generalise from the results of the model to
the real system. The inevitable concern is that the behaviour of the simulation derives from,
for example, some small detail of the heuristics in the learning algorithm, and cannot be
extended to other systems.

One approach to these concerns is the explanation, in section 5 of this paper, of the be-
haviour of the simulation in terms of replicator dynamics. This explanation is couched in
terms that are general enough to cover both the behaviour of the simulation model and of
languages. To the extent to which it is correct to think of generalisations as replicators, this
makes the fine details of the simulation irrelevant. In other words, it should be expected that
any similar simulation will give rise to similar results.

In fact, the simulation of Batali (1997), mentioned earlier, can be thought of in these terms,
although Batali does not do so explicitly. The simulation has a somewhat simpler semantic
space than the one used here. Batali’'s meanings are made up of predicates and one “referent”
which are coded as bit vectors.!? With this meaning space there can be no emergent word
order that codes for the difference between agent and patient, obviously, but it still allows
for a language which distinguishes between a word for the predicate and a word for the
referent.

The most important difference between Batali’s simulation and ours is that it uses a com-
pletely different model of learning. The individuals in the population are recurrent neural
networks (e.g. Elman 1990), trained by back propagation of error to predict the meaning vec-
tors that correspond to a string of symbols. In such a learner, the I-language is represented
not as an explicit context-free grammar, but as a pattern of connection weights within the
network. It is clear that such a learner and will have very different biases to the one em-
ployed in this paper. Certainly, there is no sense in which the network learning algorithm is
searching for minimal grammars directly.

In spite of these differences, Batali’s results can be interpreted as a move towards compo-
sitional languages very similar to that found in the simulations I have reported. Initially, the
population communicates using idiosyncratic pairings of meanings with symbol sequences.
At the end of a run, however, the sequences used by the individuals mainly appear to be

0The vectors do not explicitly encode the features predicate and referent, but the encoding is sparse so that
the predicate/referent distinction is implicit in the meaning space.
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composed of a “verbal” root plus a “pronominal” suffix. For example, in one run, every ut-
terance whose meaning included the predicate tired started with the letters cd and most ut-
terances whose referent was you ended with the letter c. So, the meaning you are tired would
be expressed cdc. Although the I-language of the networks cannot be studied directly, their
E-language behaviour appears to be compositional.

The fact that the results of Batali’s simulation and ours are of a similar type is strong
evidence that the explanation for emergence of compositionality in language is a general
one. It is likely that Batali’s result can be understood in terms of the dynamics of replicating
generalisations. One problem with an analysis of his simulation in this way is that in Batali’s
population model agents are immortal. This means that the pressure on generalisations
cannot be to survive from one generation to another (there are no generations). However,
the persistence of any feature of the language over time relies on it being produced and re-
learned again and again by the population. This is because the network architecture imposes
a finite information holding capacity — forcing form-meaning pairings into competition.

7 Conclusion

The goal of this paper has been to understand the role of truly linguistic evolution (as op-
posed to biological evolution) in the emergence of syntax. Human language is almost unique
in the natural world as being a phenomenon that persists over generations via observational
learning. As such it has its own interesting and complex dynamical properties, which the
simulation described attempts to explore. Although the extent to which these properties
have played a role in the origins of universals of human language is not well understood,
they should not be ignored when looking at human evolution.

There are three main ways in which the results of studies such as this one should impact
theories of the biological evolution of language. Firstly, it means that potentially we have
less to explain. We need not pin down every constraint on UG as an innately coded response
to pressures from natural selection. Instead our model of the language faculty can be less
constrained, and possibly less domain specific.

Secondly, if syntax is not a response to pressures from natural selection, we might ask
the question “why are there no non-human syntactic communication systems?”. In fact, one
might rephrase the question as Oliphant (1997:108) does, and ask “why are there so few
learned communication systems”.

“Most approaches to the evolution of language point to the evolution of syn-
tax as the primary barrier differentiating the communicative abilities of man
and other species ...another, more basic, bottleneck exists ...It seems that the
ability to learn by observing others is rare, if present at all, in other animals
... While most attention is generally focused on syntax, I argue that the ability
to learn observationally may be an equally, if not more important evolutionary
milestone.”(Oliphant 1997:118-119)

Thirdly, if languages are adaptive systems which undergo qualitative evolution them-
selves, then this will profoundly alter the selection pressures on the (proto-)human lan-
guage faculty. In other words a complete picture of the evolution of language may be a
co-evolutionary one. Certain classes of languages — well adapted for their own survival —
may emerge through linguistic evolution, and the natural selection pressure on the evolving
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language faculty will be to learn that class of languages more efficiently. This kind of “genetic
assimilation” of patterns in the environment of learning is controversial amongst biologists
(see Maynard Smith 1987 for a positive introduction), but there is a growing body of litera-
ture that suggests taking a co-evolutionary perspective is useful (e.g. Deacon 1997; Kirby &
Hurford 1997; Hurford & Kirby 1997; Briscoe 1997).

Throughout, this paper has concentrated on one particular feature of syntax, namely
compositionality. In section 6.1, it was suggested that some more specific features of UG
might also be explained by looking at replicator dynamics. It is important to realise, how-
ever, that there is a long way to go before a simulation like the one described here can pos-
sibly hope to demonstrate the emergence of all the constraints that syntacticians are familiar
with. (Bickerton 1997) drives this point home:

“...inlanguage evolution circles generally, the belief seems widespread that once
you've gotten as far as ‘John loves Mary’ ... syntax is off and running and nothing
stands in the way of it gradually expanding to embrace all of the many complex-
ities found in contemporary languages.

Every serious syntactician knows that nothing could be further from the truth.”

These are sobering words, but this model represents only the first step towards a demon-
stration of the emergence of a syntactic communication system from something qualitatively
simpler. Future research will have to proceed on two fronts: by making the simulation model
more powerful, particularly through the expansion of the semantic space to include recur-
sive representations; and by applying ideas of replicator dynamics to different features of
Universal Grammar. Only once we understand the limits of linguistic evolution without nat-
ural selection can we really begin to understand the biological evolution of our language
faculty.
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A Technical details of the simulation

Al

A formal definition of PAGs

The Probabilistic Attribute Grammar (PAG) formalism used in this simulation is a variant of
the one discussed in detail in Stolcke (1994) (the definitions here are modified only slightly
from Stolcke’s pages 76-77 and 105-106). As mentioned in the text, they are an extension of
a standard stochastic context free grammar (SCFG) framework.

The SCFGs are context free grammars with an integer count attached to each rule. Such
a grammar consists of:

1.

=N

a set of nonterminal symbols A/,
a set of terminal symbols Z,
a start nonterminal S, a member of A/,

a set of productions X, of the form
X—= A

where X € Al and A € (AU %),

production counts C(r) for all » € K.

This SCFG is enriched with a feature/value semantics:

1.

A2

Each nonterminal X € A/, in a SCFG derivation has an associated finite set of features
from a set F. A feature f € ¥ is a function that assigns an element from the set of
feature values 7 to the nonterminals it is defined upon. The fact that feature f on
nonterminal X has value v is denoted, X.f = v.1!

An extended context-free production specifies the feature values attached to the left
hand side nonterminal in terms of either constant values of the features of right hand
side nonterminals. Thus, a production

X — YOy®  y®

can have feature specifications
X.f=v
for some f € F and v € V, or
X.f=(i).g
for somei, 0 <i<k,and g € ¥. The 1atter specification determines the value of X.f is
whatever the value of feature g on Y® is,

Model merging operators

The model merging operators are global operations over the grammar which modify the
grammar in some way. Again, they are taken from Stolcke (1994).

UIn the output of the simulation, this is simply shown as f =v.
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A.21 MergeCat

This operator takes two category names as arguments, X1, X, € A_. The operator has the
effect of rewriting all occurrences of X; in the grammar as X512 If this causes two rules,
r1,12 € R, to become identical then r; is deleted from the grammar and the count on r; is
increased so that C(ry) = C(r1) + C(rp).

A.22 MergeFeat

This takes two feature names, f;, f € #. The operator rewrites all occurrences of f; in the
grammar by f,. In the simulations described here, there can be no two feature equations on
a rule assigning a value to one feature, so if there is a rule r € K with n feature equations
X.f = ..., then the rule is split into n rules r1, 7, ...r,. Each new rule is identical to the old
rule except that it has only one of the feature equations X.f = .... The counts are divided so
that C(r;) = C(r)/n,1 < i <n.3

A.2.3 Chunk

This takes a list of categories, X1, X5... X, € Al. The operator constructs a new rule r, X —
X1 Xy ... X, and replaces all occurrences of X1X,... X, in rules r1,;...7; in the grammar
with X.' In order that the semantics of the affected rules work in exactly the same way after
the operation as before, new feature equations are added to the new rule (each with a new
feature name) that preserve the information that is passed up to the old rules. The new rule
inherits the statistics on the old rules, so that C(r) = Zif:l C(ry).

A.2.4 AttribFeat

This operator takes a category X € A and a value v € V. The operator has the effect of
“attributing” the value v of a semantic feature f € ¥ in a rule to the left-hand side category
X. It does this by replacing all occurrences of Y.f = v, inrules, Y — A, X € A, with Y. f = (i).f1,
where f; is a newly constructed feature name, and i is the position of X in A. For each such
rewrite, every rule that has X on its right-hand side has X. f; = v added to its feature equation
list.1> The statistics on the grammar are not changed by this operation.

A.3 Model merging heuristics

Each of the low level operators listed in the previous section has an associated set of heuris-
tics which decide when, and with what arguments, they should be used. As discussed in the

2In the trace in the next section, the categories are given numerical values. The inducer always renames the
category with the higher value.

BThis is a poor approximation, however empirical studies show that “splitting” is very rare.

4For the simulations reported here, 71,7, ...7, must all have the left-hand side category S, Xi, X». .. X,, must
all expand to terminal symbols, and none of X, X ... X, should be the “pause symbol” mentioned in the text.
These constraints greatly aid the discovery of chunks in the input without search, and if they are combined with
a constraint that stops categories that expand to terminals from being merged with those that do not, then the
grammar cannot become recursive. This is justified here since the semantics of PAGs is not recursive.

15For the simulations reported here, feature attribution is constrained so that features are not attributes to
terminals and features are not attributed to rules which already have a non-null semantics. If these constraints
are relaxed, the heuristics described in the next section tend to result in semantically over-complex grammars.
Stolcke (1994) shows that constraints such as these are not required where induction with search is possible.
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text, the heuristics have to be used instead of a search for the best grammar (as in Stolcke’s
(1994) inducer) in order for the simulation to be computationally feasible. Future work will
avoid the use of heuristics as their properties are less well understood. Each heuristic takes
a pair of rules from the grammar as arguments and, if possible, calls an operator in order
to make those two rules more similar or alter them in such a way that a different heuristic
may be able to make those rules more similar. All heuristics are applied to all pairs of rules
exhaustively.

A.3.1 MergeCat heuristic

1. Given rq,1, € R and Xy, X, € A, if MergeCat(X;, X») would make r; equivalent to 7,
(except for their statistics), then apply MergeCat(Xj, X3).

A.3.2 MergeFeat heuristics

1. Given rq,r, € R with the same number of categories on their right-hand sides, and
f1, f» € F, if MergeFeat(f;, f,) would make r; equivalent to r, (except for their statistics
and the names of the categories), then apply MergeFeat(f1, f2).

2. Given rq,7; € R, with identical right-hand sides, and f1, f» € ¥, if MergeFeat(f1, f2)
would make the right-hand side of the feature equations in the two rules identical,
then apply MergeFeat(fi, f2).

A.3.3 Chunk heuristics

1. Givenry,r, € R, where r; = X; — Ay, and r, = X; — Ay, if Aj is a proper substring of
A2, then apply Chunk(A;).

2. Givenry,rp € R, wherer; = X — A, and r, = X — Ay, if the feature equation lists on
each rule differ by one value v € 7/, and A and ), differ by two substrings A3, A4, then
apply Chunk()\3) and Chunk(\4).'®

A.3.4 AttribFeat heuristics

1. Given r1,r, € R, whose right-hand sides are identical, if the only difference in the
feature equations of the two rules is that r; does not have a feature specification ....f =
v but r; does, then apply AttribFeat(X, v), where X is the left-hand side category of 4.

2. Givenry,r, € R whose syntax differ only by a pair of right-hand side categories X;, X; €
N respectively, if their semantics differ only by a pair of values vy, v, € V respectively,
then apply AttribFeat(X;,v;) and AttribFeat(X», 7).

l6For the simulations reported here, this heuristic does not apply if both A\; and A are only one category
long because this tends to make the grammar longer rather than shorter. Also, it was found that the chunks
should not take up too much of the right-hand side for a similar reason. It is hard to see a principled way of
constraining chunking without search, so as a rough rule-of-thumb, a chunk is only made if it is shorter of equal
than the right-hand side of the rule divided by the number of values in the rule’s semantics. This stops rules’
right-hand sides becoming too short before feature attribution has taken place.
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3. Given r1,r; € R whose syntax differs by at most one right-hand side category, if the
semantics of the two rules are the same except that r; has a feature equation X.f; = v
where r; has the feature equation X.f; = (i).f; and i points to the syntactic category
difference (if there is one), then apply AttribFeat(Y, ), where Y is the i*" right-hand
side category of r1.

A.4 The invention algorithm

The invention algorithm produces a string of symbols s for a meaning m given a grammar
that cannot generate a string for that meaning. The goal of invention is to produce a string
that is consistent with the structure of the language embodied by the grammar even though
that grammar cannot itself produce the string.

The first step of the process is to find the nearest meaning m’' to the target meaning such
that a string s’ can be generated for m' by the grammar. In practice this is approximated by
removing a random feature from the semantics and attempting to generate with this new
“underspecified” meaning.

Since m’' is missing a feature f which m has, and as a consequence a string can be gen-
erated, then we know that the value v for the feature f in m is causing the problem for
generation. We will assume that there is another meaning m"” which will generate s’ and as-
signs the feature f a value v # v. Some part of the string s’ is thus contributing the “wrong”
meaning f = v'. It is this part of the string that we would like to replace with a random
innovation. To do this, all we need to do is to find the point in the tree for the string s’ where
f is assigned the value v'. Every node under this point in the tree needs to be randomised.
A simple way of doing this is to replace each symbol in the string under this node with a
randomly chosen symbol."”

This simple algorithm ensures that innovation will never introduce more structure into
an utterance than is already implicit in the grammar of an individual. If the grammar spec-
ifies a vocabulary of flat one-word strings for each complex meaning, then an innovative
string will always be completely random, because the point in the tree at which the value v/
is introduced is the topmost node. Conversely, if the grammar is completely compositional,
then most of the string will be preserved, since the value v’ will be introduced low in the tree
above the word corresponding to the incorrect meaning.

17To allow the lengths of strings to change, we can occasionally delete symbols or add extra ones.
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B Trace of induction

This section gives a trace of what is going on in one individual given a tiny subset of En-
glish, namely the four sentences “John loves Mary”, “Mary hates Pete”, “Pete loves Mary”
and “Pete hates John” in this order. These sentences are given to the inducer with an ap-
propriate semantics similar to that used in this paper (i.e. Agent/Patient/Predicate feature
triples). The semantics representations are given as English sentences in the listing for clarity.
The strings of letters are given without spaces or capitals. The grammar is listed after incor-
porating each new sentence, and after all the model merging is complete. Each low-level
operator call is listed.

Notice that after hearing all four sentences, the grammar is compositional and has a noun
class and a verb class. Interestingly, the “es” suffix on “loves” and “hates” is not incorporated

into the lexicon, but is left as non-semantic material in the top level S rule.

Incorporate j ohnl ovesnar y meaning John loves Mary

2 ==>j [1] 6 ==>1 [1]
14 ==>y [1]

3 ==> o0 [1] 8 ==> v [1]
S-->234567 8910 11 12

4 ==> h [1] 13 14 [1] 9 ==> e [1]

Agent =John
5 ==>n [1] Pati ent =Mary 10 ==> s [1]
Pr edi cat e=Loves

6 ==>1 [1] 11 ==> m[1]

7 ==> o0 [1] 12 ==> a [1]
Mer geCat (3, 7)

8 ==> v [1] 13 ==>r [1]

9 ==> e [1] 14 ==> vy [1]
3 ==>o0 [2]

10 ==> s [1] S-->2345638910 11 12
2 ==>j [1] 13 14 [1]

11 ==> m[1] Agent =John
4 ==> h [1] Pat i ent =Mary

12 ==> a [1] Pr edi cat e=Loves
5 ==>n [1]

13 ==>r [1]

Incorporate j ohnl ovespet e meaning John loves Pete

3 ==> 0 [2] 11 ==> m[1] 16 ==> o [1]
2 ==>j [1] 12 ==> a [1] 17 ==> h [1]
4 ==> h [1] 13 ==>r [1] 18 ==> n [1]
5 ==>n [1] 14 ==> vy [1] 19 ==> 1 [1]
6 ==>1 [1] S-->23456389 10 11 12|20 ==> o [1]
13 14 [1]
8 ==>v [1] Agent =John 21 ==> v [1]
Pati ent =Mary
9 ==> e [1] Pr edi cat e=Loves 22 ==> e [1]
10 ==> s [1] 15 ==>j [1] 23 ==> s [1]
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24 ==> p [1]
25 ==> e [1]
26 ==> t [1]
27 ==> e [1]
S -->15 16 17 18 19 20 21 22

23 24 25 26 27 [1]
Agent =John
Pat i ent =Pet e
Pr edi cat e=Loves

Mer geCat (15, 2)
Mer geCat ( 16, 3)
Mer geCat ( 3, 20)
Mer geCat (17, 4)
Mer geCat (18, 5)
Mer geCat (19, 6)
Mer geCat (21, 8)
Mer geCat (22, 9)
Mer geCat (9, 25)

Mer geCat (9, 27)

Mer geCat (23, 10)
Chunk(24 9 26 9 )
Chunk(11 12 13 14 )
AttribFeat (29, Mary)
Attri bFeat (28, Pete)
Mer geFeat (0, 1)

Mer geCat ( 29, 28)

3 ==> 0 [4]
9 ==> e [4]
2 => | [2]
4 ==> h [2]
5 ==>n [2]
6 ==> | [2]
8 ==> v [2]

Incorporate pet el ovesnar y meaning Pete loves Mary

3 ==> 0 [4]
9 ==> e [4]
2 ==>j [2]
4 ==> h [2]
5 ==>n [2]
6 ==> 1 [2]
8 ==>v [2]
10 ==> s [2]
S-->2345638910
28 [2]
Agent =John

Patient=(9).0
Pr edi cat e=Loves

11 ==> m[1]
12 ==> a [1]
13 ==> r [1]
14 ==> y [1]
24 ==> p [1]
26 ==> t [1]

28 -->24 9 26 9 [1]
0=Pet e

28 --> 11 12 13 14 [1]
O=Mary

30 ==> p [1]
31 ==> e [1]
32 ==> t [1]
33 ==> e [1]
34 ==> | [1]
35 ==> o [1]
36 ==> v [1]
37 ==> e [1]
38 ==> s [1]
39 ==> m[1]
40 ==> a [1]
41 ==> 1 [1]
42 ==> y [1]

S --> 30 31 32 33 34 35 36 37
38 39 40 41 42 [1]

Agent =Pet e

Pati ent =Mary

Pr edi cat e=Loves
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10 ==> s [2]

S-->23456389 10
28 [2]
Agent =John
Patient=(9).0
Pr edi cat e=Loves

11 ==> m[1]
12 ==> a [1]
13 ==> r [1]
14 ==> y [1]
24 ==> p [1]
26 ==> t [1]

28 -->24 9 26 9 [1]
O=Pet e

28 --> 11 12 13 14 [1]
O=Mary

Mer geCat ( 30, 24)

Mer geCat (31, 9)

Mer geCat (9, 33)

Mer geCat (9, 37)

Mer geCat (32, 26)

Mer geCat ( 34, 6)

Mer geCat ( 35, 3)

Mer geCat ( 36, 8)

Mer geCat (38, 10)

Mer geCat ( 39, 11)

Mer geCat (40, 12)

Mer geCat (41, 13)

Mer geCat (42, 14)
Chunk(24 9 26 9 )
Chunk(11 12 13 14 )
AttribFeat (43, Pete)
Mer geFeat (2, 0)

Mer geCat (43, 28)
Attri bFeat (44, Mary)
Mer geFeat ( 3, 0)

Mer geCat (44, 28)
Chunk(2 3 4 5)
AttribFeat (45, John)
Mer geFeat (4, 0)

Mer geCat (45, 28)

9 ==> e [7]
3 ==> 0 [5]
6 ==> | [3]
8 ==> v [3]

10 ==> s [3]
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S-->286 389 10 28
Agent =(0).0
Patient=(6).0
Pr edi cat e=Loves

(3]

2 ==>j [2]
4 ==> h [2]
5 ==>n [2]
Incorporate j ohnhat esmary
9 ==>¢e [7]
3 ==> 0 [5]
6 ==> | [3]
8 ==> v [3]
10 ==> s [3]

S-->286 389 10 28
Agent=(0).0
Patient=(6).0
Pr edi cat e=Loves

(3]

2 ==>] [2]

4 ==> h [2]

5 ==>n [2]

24 ==> p [2]

26 ==> t [2]

11 ==> m[2]

12 ==> a [ 2]

13 ==>7r1 [2]

14 ==>y [2]

28 --> 249269 [2]
O=Pete

28 --> 11 12 13 14 [2]
O=Mary

28 -->2 345 [2]
0=John

46 ==>j [1]

47 ==> o0 [1]

48 ==> h [1]

49 ==>n [1]

50 ==> h [1]

LANGUAGE EVOLUTION WITHOUT NATURAL SELECTION

24 ==> p [2]
26 ==> t [2]
11 ==> m[2]
12 ==> a [2]
13 ==> r [2]
meaning John hates Mary
51 ==> a [1]
52 ==> t [1]
53 ==> e [1]
54 ==> s [1]
55 ==> m [ 1]
56 ==> a [1]
57 ==> r [1]
58 ==> y [1]

S --> 46 47 48 49 50 51 52 53
54 55 56 57 58 [1]

Agent =John

Pati ent =Mary

Pr edi cat e=Hat es

Mer geCat (46, 2)

Mer geCat (47, 3)

Mer geCat (48, 4)

Mer geCat (4, 50)

Mer geCat (49, 5)

Mer geCat (51, 12)

Mer geCat (12, 56)

Mer geCat (52, 26)

Mer geCat (53, 9)

Mer geCat (54, 10)

Mer geCat (55, 11)

Mer geCat (57, 13)

Mer geCat (58, 14)
Chunk(11 12 13 14 )
Chunk(2 3 4 5)
AttribFeat (59, Mary)
Mer geFeat (5, 0)

Mer geCat (59, 28)
Attri bFeat (60, John)
Mer geFeat (6, 0)

Mer geCat (60, 28)
Chunk(4 12 26 )
Chunk(6 3 8 )

Attri bFeat (62, Loves)
AttribFeat (61, Hat es)
Mer geFeat (7, 8)

14 ==> vy [2]

28 -->24 9 26 9 [2]
O=Pet e

28 --> 11 12 13 14 [2]
O=Mary

28 -->2345 [2]
0=John

Mer geCat (62, 61)

9 ==> e [8]

3 ==>0 [6]

4 ==> h [4]

10 ==> s [4]

12 ==> a [4]

S -->28 61 9 10 28 [4]
Agent =(0).0
Patient=(4).0
Predi cate=(1).7

6 ==> | [3]

8 ==>v [3]

2 ==>]j [3]

5 ==>n [3]

26 ==>1t [3]

11 ==> m [ 3]

13 ==>r [3]

14 ==> vy [3]

28 --> 11 12 13 14 [3]
O=Mary

28 --> 2345 [3]
0=John

61 -->6 38 [3]
7=Loves

24 ==> p [2]

28 -->24 9 26 9 [2]
O=Pet e

61 --> 4 12 26 [1]
7=Hat es



