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1.1 Introduction

Human language is a unique natural communication system for two rea-
sons.! Firstly, the mapping from meanings to signals in language has
structural properties that are not found in any other animal’s communi-
cation systems. In particular, syntax gives us the ability to produce an
infinite range of expressions through the dual tools of compositionality
and recursion. Compositionality is defined here as the property whereby
an expression’s meaning is a function of the meanings of parts of that
expression and the way they are put together. Recursion is a property
of languages with finite lexica and rule-sets in which some constituent of
an expression can contain a constituent of the same category. Together
with recursion, compositionality is the reason that this infinite set of
expressions can be used to express different meanings.

Secondly, at least some of the content of this mapping is learned by
children through observation of others’ use of language. This seems not
to be true of most, maybe all, of animal communication (see review
in Oliphant, this volume). In this chapter I formally investigate the
interaction of these two unique properties of human language: the way
it is learned and its syntactic structure.

! The research for this chapter was carried out at the Language Evolution and
Computation Research Unit at the Department of Linguistics, University of Ed-
inburgh funded by ESRC grant R000237551. I would like to thank Jim Hur-
ford, Mike Oliphant, Ted Briscoe and Robert Worden for useful discussions relat-
ing to the material presented here (although they do not necessarily agree with
the content). The author’s email and home page are: simon@ling.ed.ac.uk,
www.ling.ed.ac.uk/~ simon.

PREFINAL DRAFT: Kirby, S. (2002). Learning, bottlenecks and the evolution of recursive
syntax. In Briscoe, T., editor, Linguistic Evolution through Language Acquisition: Formal
and Computational Models, chapter 6, pages 173-204. Cambridge University Press.
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1.1.1 Ewolution without natural selection

Evolutionary linguistics is currently a growing field of research tackling
the origins of human language (Bickerton 1990; Pinker & Bloom 1990;
Newmeyer 1991; Hurford et al. 1998). Of particular interest to many
researchers is the origins of syntactic structure. Perhaps the dominant
approach to the evolution of this structure is expounded by Pinker &
Bloom (1990); they suggest that the best way to view human language
is as a biological adaptation that evolved in response to the need to
communicate “propositional structures over a serial interface” (p. 707).
In their (and many linguists) view, syntax is to a significant extent
specified by an innate (and therefore genetically determined) language
acquisition device (LAD) which constrains the language learner with
prior knowledge about the nature of language.

Evolutionary theory offers clear criteria for when a trait should be attributed
to natural selection: complex design for some function, and the absence of
alternative processes capable of explaining such complexity. Human language
meets these criteria.

Pinker & Bloom (1990:707)

In this chapter I agree that the structure of the human learning mech-
anism(s) will bring particular prior biases to bear on the acquisition task.
Indeed there are good theoretical reasons why this must be the case for
any learner that can generalise (e.g. Mitchell 1997). However, because
language is unique (an autapomorphy in biological terms) we should
search very carefully for “alternative processes” before turning to natu-
ral selection as an explanation. In fact, recent work of which this chapter
is a continuation, (Batali 1998; Kirby 1998a; Kirby 1998b; Hurford 1998;
Batali, this volume; Hurford, this volume) has suggested that some of
the complex structure of language may be the result of a quite different
process from biological evolution. This work shows that learning influ-
ences the dynamic process of language transmission, historically, from
one generation to the next. In many ways this approach is mirrored in
the recent work of linguists from quite different research perspectives
(e.g. Niyogi & Berwick 1995; Niyogi & Berwick 1997; Christiansen &
Devlin 1997; Briscoe 1998). This chapter aims to demonstrate that,
for any reasonable learning bias, basic structural properties of language
such as recursion and compositionality will inevitably emerge over time
through the complex dynamical process of social transmission — in other
words, without being built in to a highly constraining innate language
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acquisition device.

1.1.2 A computational approach

If we are to understand the ways in which a learned, socially transmitted,
system such as language can evolve we need some sophisticated models
of learners embedded in a dynamic context. Verbal theorising about
the likely behaviour of complex dynamical systems is often not good
enough. As Niyogi & Berwick (1997) point out, our intuitions about the
evolution of even simple dynamical systems are often wrong. Recently,
many researchers have responded to this problem by taking a computa-
tional perspective (e.g. Hurford 1989; Hurford 1991; MacLennan 1991;
Batali 1994; Oliphant 1996; Cangelosi & Parisi 1996; Steels 1996; Kirby
& Hurford 1997b; Briscoe 1997; Briscoe 1998). This methodology pro-
vides a third way between verbal theorising on the one hand and on the
other, analytical mathematical approaches — which are often difficult
to formulate for these types of system. This chapter follows on from this
line of research, developing a working computational simulation of in-
dividuals capable of learning to communicate by observing each other’s
behaviour, and tracking the development of the artificial languages that
emerge in the population.

The rest of this chapter is divided into three main sections. Firstly,
the computational model is described in some detail, with particular
attention being paid to the process of learning (although some details
are left to an appendix). The next section deals with two representative
experiments with the model dealing with the emergence of composi-
tionality given simple semantics, and with the emergence of recursive
subordinate clauses given a more complex semantic space. Finally, an
explanation of the behaviour of the simulation is given in theoretical
terms along with a discussion of the impact of these results on linguistic
theory.

1.2 A working model of linguistic transmission

Language exists in two different domains (Chomsky 1986; Hurford 1987;
Kirby 1999):

I-language This is (internal) language as represented in the brains of
the population. It is the language user’s knowledge of language.
E-language This is the (external) language that exists as utterances in
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figure 1.1. The transmission of language over time.

the arena of use (Hurford 1987).

These two domains of language influence each other in profound ways
via the process of linguistic transmission diagrammed in figure 1.1. E-
language is a product of the I-language of speakers. However, the I-
language of language learners is a product of the E-language that they
have access to. A model of the constraints on these two domains and
the transformations that map between them should be sufficient to de-
termine the dynamical properties of linguistic transmission.

A computational simulation of linguistic transmission works within
the framework shown in figure 1.2, an elaboration of the model in figure
1.1. The simulation implements these processes:

1. An individual in the simulation is given a set of meanings that must
be expressed. These meanings can be thought of as being provided
by the external “world”, but in the simulation will simply be chosen
randomly from some predefined set.

2. The individual then attempts to express each meaning either using
their own internalised knowledge of language or by some random
process of invention.

3. A new learner takes this set of utterances and uses it as input to
learning.

4. Finally, the learner becomes a new speaker the old speaker is dis-
carded and a new individual is added to become a new learner and
the cycle repeats.

The utterances that the individuals produce and learn from in these
simulations are pairs of strings of letters (which can be thought of as
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figure 1.2. A computational implementation of linguistic transmission.

basic unanalysable phonemic segments) and meaning representations.
In these simulations the world is made up of a set of predefined atomic
concepts. These might include:

john  tiger
eats  fears
knows

These concepts can be combined into simple predicate-argument propo-
sitions, which may have hierarchical structure. For example:

fears(john,tiger)
knows(john eats(tiger,john))

So, an example utterance by an individual in the simulation that
happened to know something like English might be the pair:

< tigereatsjohn, eats(tiger,john) >

Obviously the biggest component of the simulation will be the part that
takes sets of pairs such as these and is able to learn from them in some
useful way — in other words, the part of the simulation that takes
instances of E-language and maps them into I-language. This is the
subject of the next section.
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1.2.1 Learning

For simulations such as the one presented in this chapter, which model
many generations of speakers and acquirers, the design of the learning
algorithm is crucial. Two important criteria for a learning algorithm for
us are: efficiency, because the simulations will need to model thousands
of learners over time; and ease of analysis, since we are interested in how
the language evolves over time and it is therefore important to be able
to easily inspect the internal states of the learners.

The algorithm presented here? has been designed specifically with
simulation tasks in mind — it is extremely simple and efficient, and it
enables the internal states of learners to be easily analysed. Although
no claims are made here for its efficacy as a practical grammar induction
tool, it does model in a simple way the dual processes of rote learning
of examples and induction of generalisations that must be at the core of
any model of language acquisition.

Grammatical representation

For these simulations, the hypothesis space that the learning algorithm
searches consists of context-free grammars enriched with the kind of sim-
ple semantics described above. In fact, these grammars are a restricted
form of definite-clause grammar in which non-terminals may have a sin-
gle argument attached to them which conveys semantic information. It
is important to realise that although the internal knowledge of the in-
dividuals is a type of context-free grammar, this does not mean that
compositionality or recursion is built-in. Consider a learner that can
produce the string tigereatsjohn meaning eats(tiger,john). Here are
two (of many, many possible) grammars that this learner could have
internalised:

S/p(z,y) = N/z V/p Nfy
V/eats — eats

N/tiger — tiger

N/john — john

S/eats(tiger,john) — tigereatsjohn

The S symbol in these grammars is the start symbol, whereas the NV and
V' are arbitrarily named non-terminals. The lower case letters are short-
hand for preterminals that expand to atomic phonemic segments. The

2 In some respects the algorithm is a simplification and development of the one
described in Kirby (1998a) and Kirby (1998b).
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material following the slashes attached to non-terminals is the semantic
representation for that non-terminal.3

The grammar on the left is the simplest grammar that could produce
the utterance. It states that “tigereatsjohn” is a valid sentence mean-
ing eats(tiger,john). Notice that this is entirely non-compositional — in
no way is the meaning of the whole a function of meanings of its parts.
In fact the string is not broken down or analysed at all, instead it is
simply treated as a holistic chunk.

The grammar on the right, however, is compositional. The sub-parts
of the string each are assigned meanings. So, for example, tiger corre-
sponds to the meaning tiger. The whole string is composed by piecing
these substrings together and combining their meanings using the vari-
ables z, p, and y.

It should be clear from this example, that although the grammatical
formalism (obviously) allows us to represent languages that are struc-
tured syntactically, it does not constrain languages to be of this form.
In other words, the space of languages that the learners have access to
includes many that would not be considered possible human languages
because, for example, they are non-compositional. The choice of formal-
ism therefore does not build-in the result we are looking for.

Rule subsumption

In the first stage of learning, the grammar contains no rules. Data is
presented to the the inducer as a pairing of a string of terminals and a
semantic structure. A single pair can be incorporated into the grammar
rather trivially. Say the pair

< tigereatssausages, eats(tiger,sausages) >

is to be incorporated. The simplest rule that covers this “fact” about
the language to be induced is:

S /eats(tiger,sausages) — tigereatssausages

3 Formally, the semantic structures attached to non-terminals can take one of three
forms: a fully specified form (i.e. a semantic structure with no variables), a par-
tially specified form (i.e. a semantic structure with some variables, although the
variables may only occur at the top level), or a variable. The left hand side seman-
tics can take any of these forms in the grammar, but right hand side non-terminals
can only take semantic variables in this formalism.
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A trivial learning algorithm could involve gathering one of these lan-
guage facts for every string-meaning pair presented and storing them as
one big grammar. This would give us a grammar which can generate
exactly and only the sentences in the input. We could add one simple
refinement to this technique by deleting duplicate rules in the gram-
mar. In fact these two basic operations — incorporation, and duplicate
deletion — are at the core of the final induction algorithm used by the
simulation.

The problem with using just these two operations is that the inducer
has no power to generalise. As such, this is a rather poor model of
learning. A basic strategy for extracting generalisations from rules that
are overly specific (similar in some ways to the more general method
used in some inductive logic programming — see, e.g. discussion and
citations in Mitchell (1997)) is to take pairs of rules and look for the
least-general generalisation that can be made that subsumes them within
some prespecified constraints. For example, imagine a grammar with
these two rules:

S/eats(tiger,sausages) — tigereatssausages
S/eats(john,sausages) — johneatssausages

What is the least general rule that would subsume both of these? Firstly,
we need to replace tiger and john in the semantics with a variable. So
the left hand side becomes: S/eats(z, sausages). But this means we need
a nonterminal with an x attached to it in the right hand side of the rule.
If we replace tiger and john on the right hand sides with a single new
category (let’s call it N), the we have our new rule:

S/eats(z,sausages) - N/x eatssausages

We can now delete the original two rules because we have one that sub-
sumes them both. However, there is a problem here. We have introduced
a new nonterminal, N, but there is no rule saying what an N is. At ev-
ery stage of induction, our generalisation should ensure that the new
grammar can still parse the sentences that it could parse previously. In
other words, the set of sentences L(g) that a grammar g could generate
before generalisation will always be a subset (though not necessarily a
proper subset) of the set of sentences L(g’) that could be generated after
generalisation. So, we must add two new N rules:

N/tiger — tiger
N/john — john
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This is the most commonly applied subsumption method in the in-
duction algorithm, but there are others. For example, if there are two
rules such as:

N/mary — mary
M /mary — mary

then a rule that subsumes these two will simply choose one of the non
terminal category symbols N or M. Let us say that it chooses to replace
M with N,* then to keep the induction preservative we must rewrite all
occurrences of M throughout the grammar with N.

The induction algorithm thus proceeds by taking an utterance, incor-
porating the simplest possible rule that generates that utterance directly,
and then searches through all pairs of rules in the grammar for possible
subsumptions like the ones described above until no further generali-
sations can be found, and finally deletes any duplicate rules that are
left over. More details about the algorithms for rule-subsumption and
the constraints on its application can be found in the appendix to this
chapter.

1.2.2 Invention

The particular meanings of the sentences that the speakers produce is
controlled by the experimenter. The space of possible meanings can be
thought of as the population’s “world model”, in other words, what they
want to talk about. One way to think of it is that the world compels the
speaker to try to produce a string for a certain meaning. This means that
there is no guarantee that the speaker will have a way of generating a
string for the meaning it is compelled to produce. This will be especially
true of the early stages of any simulation run, since the population is
initialised with no grammatical knowledge at all.

If there was no way for speakers to produce strings in the absence of
a grammar that can generate them, then a language could never get off
the ground. It is important, therefore, that our model of an individual
be enriched to allow for invention. The invention process is essentially
a mechanism for introducing random new words for chunks of meaning,
but it should not build in new syntactic structure. In other words, we

4 In general which it chooses will not matter except in the case of the start category,
S. The start category is never changed.
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assume that the individuals are able to invent strings of sounds but are
not able to spontaneously invent hierarchical structure that they have
not observed.

The invention algorithm used here, given a meaning that the speaker
does not have a way of producing, tries to find the closest meaning that
the speaker does have a way of producing. With this new meaning, a
string and a parse tree for that string can be generated. The parse tree
will show the parts of the string that correspond to the “wrong” parts
of the meaning — in other words, the parts of the near meaning that
are different to the meaning that should have been produced. These
parts of the string are excised, and replaced with a random sequence
of symbols.® Finally, the speaker’s induction algorithm “hears” its own
invented string/meaning pair (this ensures that the speaker’s output is
consistent).

An example should make this clearer. Imagine that a speaker has the
following grammar:

S/loves(john,z) — johnloves N/z
N/mary — mary
N/jane — jane

This speaker is then asked to produce a string for the meaning loves(john,
anna). The nearest meanings to this that the speaker can produce strings
for are loves(john, mary) or loves(john, jane). We’ll pick the first, which
produces the tree structure:

S/loves(john,z)
oves jO\

@ = mary

johnloves N/mary

mary

The wrong part of this tree is the material dominated by the node
that introduces the meaning mary. We therefore delete the string mary
and replace this with a random sequence of characters. So, the invented
string for the meaning loves(john,anna) might be johnlovesspog. So, in
this case, the compositionality of the grammar is reflected in the invented

5 For the simulation runs presented here, the sequence varies from 1 to 3 letters
randomly chosen from the alphabet.
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string.

A second example demonstrates an important property of the algo-
rithm which avoids the introduction of novel structure. We’ll use the
same grammar, but instead try and invent a string for the meaning
loves(fred,mary). The nearest meaning to this one using the grammar
is loves(john,mary), which generates the same tree as above. This time
the wrong bit of meaning is john, which dominates the whole string. An
invented string for loves(fred,mary), therefore, might be a totally non-
compositional string like bling.

1.2.3 Summary of simulation cycle

In general the simulation can contain a population of any number of
individuals, but to keep things simple in the experiments described here,
there are only ever two individuals at any one time: an adult speaker
and a new learner. At the start of any simulation run, neither the
speaker nor the learner has any grammar at all — in other words, they
have no knowledge of language. This means that any language that is
observed in the simulation is purely emergent from the interactions of
the individuals in the simulation.
Each generation in the simulation goes through the following steps:

1. The speaker tries to produce a set of utterances that will form input to
the learner. This involves repeating the following sequence of actions
some number of times (set by the experimenter):

(a) The speaker is given a meaning chosen at random from a prede-
fined set.

(b) If the speaker is able to generate a string for that meaning using its
grammar, it does so, otherwise it invents a string.® If the speaker
has invented a string, the speaker uses that string-meaning pair
as input to induction. This means that, if an individual invents a
new way of saying something, they will learn from that and use
that invention again if the need arises.

(c) The learner is given the string, and tries to parse it with any

6 Generation is always deterministic. If the grammar allows more than one way of
producing a certain string, only one way is ever used. However, which one is used
will be random. This is implemented by randomly ordering the grammatical rules
once after the learner becomes a speaker, and using this order to inform the choice
of rules employed in generation.
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grammar it might have. If it is unable to parse the string, then it
takes the string-meaning pair and uses it as input to induction.

2. The speaker’s grammar is logged and then it is deleted from the
simulation.

3. The learner becomes the new speaker, and a new learner with a blank
grammar is added to the simulation.

The two main parameters that the experimenter can vary in this
model are: the number of utterances that the speaker will be called
upon to produce in its lifetime, and the structure and size of the meaning
space. In the discussion section of this chapter we will see that these
two parameters bear upon each other in an interesting way.

1.3 Example experiments

This section describes in detail two experiments which demonstrate that
interesting linguistic structure emerges in initially non-linguistic popu-
lations over time in the cycle of acquisition and use. Each experiment
has been run many times with differing initial random-number “seeds”.
In analysing the results we are able to directly examine individual gram-
mars as well as plotting numerical values such as the proportion of mean-
ings that are produced without invention, and size of grammar.

1.3.1 Degree-0 compositionality

In the first simulation run we experiment with the properties of lan-
guages that emerge when the individuals only communicate about simple
meanings. The meaning space is made up of simple degree-0 two-place
predicates (i.e. predicates with no embedding) in a world with five pos-
sible “objects” and five possible “actions”. Example meanings are:

likes(gavin,mary)
loves(mary,john)
hates(heather,pete)
and so on...

In these simulations, the arguments of the predicates must be distinct
— in other words, reflexives like loves(john,john) are not allowed.

This means there 100 distinct meanings that the individuals may wish
to express (5 predicates x 5 possible first arguments x 4 possible second
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figure 1.3. A scatter plot of the start and end of the simulations in a space
of I- vs. E-language size.

arguments). Each speaker produces 50 utterances in a lifetime, each of
which is chosen at random from this space of two-place predicates. This
means that, even if the meanings were carefully chosen, rather than
being picked at random, learners can never be exposed to the entire
range of possible meanings.

The results of the simulation can be plotted on a graph of grammar
size against grammar expressivity. The former is calculated simply by
counting the number of rules in each speaker’s grammar, and the lat-
ter can be estimated by counting the proportion of utterances that the
speaker produced without resorting to invention. These two values can
be thought of as the I-language size and E-language size, respectively.
Figure 1.3 is a scatter plot on this space, of the state of the languages
at the start of the simulation runs (i.e. at the end of the first speaker’s
“life”) and again at the end of the simulation runs. In fact, almost all
the simulation runs ended up at the same point (with an expressivity of
100, and 11 grammar rules). The one exception is a language that had
not converged on a stable system of 11 rules by the end of the run (we
return to this situation later). Figure 1.4 shows the movement through
this space of the languages of five typical simulations.
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These graphs are best understood by working through a particular
example language as it changed over time. Here is a typical first gen-
eration grammar (nonterminals except for the start nonterminal S are

arbitrarily chosen capital letters):

Generation 1

S /detests(john,gavin) — ngb
S/hates(heather,mary) — b
S/loves(mary,pete) — k
S/admires(john,mary) — u
S/detests(pete,john) — ayj
S/likes(heather,gavin) — g
S/loves(john,mary) — o
S/loves(pete,john) — vcs
S/likes(john,pete) — os
S/loves(heather,gavin) — e
S/likes(mary,gavin) — ke
S/admires(john,gavin) — hy
S/admires(pete,heather) — dx
S/admires(gavin,pete) — x
S/likes(heather,mary) — d

S /detests(heather,john) — m

S/detests(john,pete) — fu
S/detests(mary,gavin) — qaq
S/hates(gavin,john) — jrx
S/likes(gavin,john) — w
S/admires(gavin,mary) — h
S/hates(heather,gavin) — nln
S/hates(pete,mary) — r
S/likes(gavin,pete) — qi
S/admires(gavin,john) — j
S/detests(john,mary) — £
S/detests(heather,pete) — wkm
S/detests(pete,mary) — sm
S/loves(heather,john) — i
S/hates(john,heather) — xf
S/loves(mary,gavin) — bni
S/admires(gavin,heather) — yn
S/hates(heather,pete) — yya
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S/admires(z,john) — £ A/z
A/mary — 1g

A/pete — nv

This is the grammar of the very first speaker at the end of life. The
reason the speaker has any grammar at all is due to the fact that every
utterance that it invents it also uses for its own induction. The gram-
mar is essentially an idiosyncratic vocabulary for a random subset of
the meaning space. So, for example, the speaker’s sentence correspond-
ing to the English “Gavin hates John” is jrx, whereas the sentence for
“Gavin likes John” is the completely unrelated w. This, then is a non-
compositional, non-syntactically structured communication system. No-
tice, however, that a chance similarity of two sentences — f1lg meaning
admires(mary,john) and fnv meaning admires(pete,john) — has lead to

the creation of an A category for mary and pete.
Further on in this same simulation, we have grammars such as this

one:

Generation 14 A/gavin —» b
S/hates(pete,john) — a A/mary — ni
S/p(john,z) — A/x B/p Aljohn — y
S/likes(gavin,pete) — 1w A/heather — x
S/hates(heather,john) — z A/pete > h
S/p(x,mary) -1 B/p Al/z B/loves — y
S/p(pete,gavin) — dx E/p B/hates — n
S/admires(heather,mary) — hhi Blikes — z
S/likes(mary,pete) — h B/detests - m
S/p(x,heather) - F/p A/z C/pete — t
S/hates(gavin,mary) — rw C/gavin — yo
S/detests(gavin,john) — vow C/heather — gpi
S/hates(heather,gavin) — s C/john — d
S/detests(z,y) - D/xz Aly D /heather — kr
S/hates(mary,x) - D/x rs D/gavin — q
S/hates(heather,pete) — kw E/hates — ¢

S/likes(heather,gavin) — ufy
S/loves(z,y) - AJy Az
S/likes(z,y) =1 C/y Ajz
S/admires(z,y) — A/y C/z
S/p(z,y) = C/z B/p n Aly

E/detests — rp
F'/detests — r
F/hates — mofw
F'/admires — u,d

Here, we have some productive generalisations. For example, there

are several words of category A, which can be used in different contexts.
The A category in fact covers all the objects in the semantic space,
although objects are not exclusively expressed in this way. For example,
in different contexts, heather can be expressed as gpi, kr or x.

Turning time forward even further, we get some highly regular gram-
mars:
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Generation 112 A/pete — re C/heather — fkn
S/p(z,y) — Aljohn — y C/pete — t

Cl/y B/p n Alz B/loves — xfh C/mary — ns
S/p(z,y) — B/hates —+n C/gavin — yo
A/y C/z B/p n B/admires — srw C/john — d
A/gavin —» b B/likes — z

A/mary — ni B/detests —m

Now the category B can clearly be thought of as a verb. There are
two nominal categories C and A, giving us two types of expression for
most of the objects in the semantic space as shown in the table below:

Meaning | type 1 (category C) type 2 (category A)
mary ns ni
pete t re
gavin yo b
john d y
heather fkn —

There are now only two sentence rules. The first sentence rule gives
us an OVS language, with the object nouns of type 1, and the subject
nouns of type 2. In the other sentence rule, the word order is OSV.
Interestingly, the two types of noun have switched roles, so the object
nouns are of type 2, and the subject nouns are type 1.

This form of the language is fairly stable, losing the type 2 form of
gavin, but otherwise remaining the same for thousands of generations.
In fact, this is similar to the state of the “unusual” language in figure
1.3, which has a larger grammar at the end of its simulation run than
those of the rest of the simulations. Eventually, however, the language
goes through a rapid and complex series of changes to end up with the
following form, which only has one type of noun:

Generation 7944 A/mary — pd
S/p(z,y) >v Aly g A/ B/p n  B/hates »n
A/gavin — gw B/loves — ¢
A/john — gbb B/detests - m
A/pete - k B/admires — srw
A/heather — gyt B/likes — z

This result is fairly typical of the simulation run started with different
random-number seeds. The language in the population evolves from an
idiosyncratic vocabulary for complex meanings to a completely compo-
sitional syntax with nominal and verbal categories. The main variation
between runs is how quickly the coverage of the basic categories becomes
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complete. Sometimes an idiosyncratic sentence rule for a particular ac-
tion, or particular object survives for a long time, and very occasionally
optionality in word order emerges and appears to be stable for a long
time.

1.3.2 Infinite language, finite means

The simulation in the previous section used a finite meaning space. The
next step is to expand the meaning space so that there is an infinite range
of meanings that may be expressed. To do this we include predicates
which may take other predicates as arguments. The simulation is run
again with five “embedding predicates” (such as know, say etc.) Each
speaker tries to produce 50 degree-0 meanings as before, but also then
tries to produce 50 degree-1 meanings and finally, 50 degree-2 meanings.”

Because the potential expressivity of a language with this kind of
semantics is infinite, we cannot visualise the behaviour of the simula-
tion in the same way as we did for degree-0 meanings. Instead, figure
1.5 shows the proportion of degree-0, degree-1 and degree-2 meanings
expressed without invention against time averaged over ten simulation
runs. Also plotted on these graphs is a line showing the average size of
the grammars in these runs.

Once again, this graph can best be understood by looking at the
evolution of language in a particular simulation run. The first generation
grammars for a simulation starting with these parameters are very large
(over 100 rules), because there are three times as many utterances to be
produced. Here is a small subset of a typical first generation grammar
for this new set of conditions:

Generation 1

S/praises(pete,heather) — k
S/hits(john,mary) — u
S/admires(heather,pete) — y
S/hates(gavin,mary) — qv
S/says(mary,admires(gavin,mary)) — n
S/says(mary,praises(pete,gavin)) — te
S/decides(heather, hits(gavin,john)) —h
S/says(john,hits(mary,pete)) — q
S/knows(gavin,loves(pete,heather)) — r

S/believes(john,praises(heather,mary)) — ei
S/says(mary,loves(heather,gavin)) — 1

7 Notice, this presentation scheme simulates a “starting small” learning paradigm
(Elman 1993; Kirby & Hurford 1997a).
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S/thinks(gavin,loves(gavin,mary)) — a

S /decides(heather,hates(heather,pete)) — vi

S /decides(john,admires(heather,john)) — jj

S /says(heather,hits(gavin,john)) — 1zf
S/decides(heather,hits(john,mary)) — apv
A/praises(heather,pete) — p

S/knows(gavin,p) — g A/p

A/admires(mary,gavin) — ws
S/says(mary,thinks(mary,praises(john,gavin))) — bx
S/thinks(pete,thinks(john,admires(pete,heather))) — gv
S/believes(pete,thinks(john,hates(john,heather))) — bc
S/believes(gavin,thinks(gavin,hates(heather,pete))) — im
S/believes(pete,decides(gavin,hates(pete,heather))) — 1sq
S /decides(heather,believes(heather,admires(mary,pete))) — hjg
B/admires(mary,heather) — p

S/knows(pete,p) - m B/p d

B/knows(john, loves(john,mary)) — m

Firstly, notice that the vocabulary obviously includes more complex
meanings such as says(mary, thinks(mary, praises(john,gavin))) (in English
“Mary says she thinks that John praises Gavin”). As with the last sim-
ulation runs, the inducer has already done some work. So, the similarity
between the sentences mpd meaning knows(pete, admires(mary,heather))
and mmd meaning knows(pete, knows(john, loves(john,mary))) has lead to
the creation of a category B for admires(mary,heather) and knows(john,
loves(john,mary)).

The grammars in the simulation rapidly increase in size and com-
plexity, peaking in the mid 200’s in terms of number of rules, and they
also are quickly able to express the full range of degree-0 meanings using
regular sentence rules rather like those that emerged in the simulation
runs in the previous section. However, after some time the grammars
typically reduce dramatically in size:

Generation 115 B/heather — v
S/p(z,q) = S/q C/p gp B/x 4 B/gavin — eks
S/p(z,y) = stlw A/p B/y B/z B/mary > k

Afloves — r B/john — a
A/admires — i C/says — fdbtl
A/hates = wja C/decides — b
A/detests — w C/believes — o
A/likes — btl C/knows — z

B/pete — £ C/thinks = t
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figure 1.5. Proportions of meaning space covered and size of grammars aver-
aged of ten simulation runs, plotted on two different time-scales. The grammar
size is scaled down by a factor of 300 in order that it can be plotted on the
same scale. Coverage of the different meaning types increases and the size of
the grammar decreases over time.

There are two sentence rules in this grammar, and three other cate-
gories. The second sentence rule is similar to the ones we saw in the pre-
vious section, allowing the language to express the full range of degree-0
sentences. The category A is a verbal category, and B is the nominal
category. This language has VOS order in main clauses.

The other sentence rule is the one that allows the language to express
meanings greater than degree-0. It introduces a category C for verbs
that have a subordinating function (such as fdbtl meaning says), and
crucially has a category S on its right hand side. This means that
the language is recursive, allowing it to build up an infinite range of
meanings. The tree in figure 1.6 shows how this particular language
copes with complex meanings. It displays the parse for the sentence
stlwrkazgpfd which, translated into English, means “Pete knows that
John loves Mary”.

Again, the language in the simulation has evolved simply by being
learned and used repeatedly by individuals in the population. An ini-
tially random, idiosyncratic non-compositional and relatively inexpres-
sive communication system, has become a compact, compositional lan-
guage with nominal and verbal categories, word order encoding meaning
distinctions and recursive subordinate clauses allowing the speakers to
express an infinite range of meanings. The question is why?
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S/p(x,q
Z l\\d
p = knows @ = pete

g = loves(john,mary)

/
AT

stlw p = loves ¥ = mary @ = john

C/knows B/pete

| |

A/loves B/mary B/john

[ l

figure 1.6. “stlwrkazqpfd” meaning Pete knows that John loves Mary.

1.4 Bottlenecks and universal grammar

The individuals in the simulation simply observe each other’s behaviour
and learn from it, occasionally inventing, at random, new behaviours of
their own. From this apparent randomness, organisation emerges. Given
that so little is built into the simulation, why is compositional, recursive
syntax inevitable? To answer this question we need to look back at how
languages persist over time in a population (figure 1.1).

We can divide up I-language into units — replicators — that may or
may not persist through time. The persistence of an I-language in this
view is related to the success of the replicators that make up that lan-
guage. In other words, the languages which are more easily transmitted
from generation to generation will persist.

Within a population, certain replicators actually compete for survival.
That is, the success of one must be measured relative to the success of
others in the population at that time. These competing replicators are
those rules which potentially express the same meaning. If there are two
ways of saying John loves Mary, then on a particular exposure to this
meaning, the learner can obviously only hear one of them. Therefore, on
one exposure, only one of the rules (or, more properly, set of rules) that
can be used to express John loves Mary has a chance of being induced
by the learner.

At face value, it would seem that the two competing rules (or rule-
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sets) will have an equal chance of being the one chosen for producing the
meaning, so the replicative success of all rules in a language should be
equal. This would be true if each rule only ever expressed one meaning.
However, if one rule can be used to express more meanings than another,
then, all other things being equal, that rule will have a greater chance
of being expressed in the E-language input to the learner. In this case,
the more general rule is the better replicator.

For a more concrete example, consider a situation where, in the pop-
ulation of I-languages, there are two competing rules. One is a rule that
expresses John loves Mary as an unanalysed string of symbols — essen-
tially as one word. The other rule expresses John loves Mary as a string
of symbols, but can also be used to express any meaning where someone
loves Mary. So, the latter rule can also be used to express Gavin loves
Mary and so on. Further imagine that both rules have an equal chance
of being used to express John loves Mary. The more general rule is
a better replicator, because for any randomly chosen set of meanings,
we can expect it to be used more often than the idiosyncratic rule. Its
chances of survival to the next generation are far more secure than the
idiosyncratic rule.

Of course, the more general rule will not be learned as easily as the
idiosyncratic rule. In the simulations described above, an idiosyncratic
pairing of one meaning to one form takes only one exposure to learn,
but the most general rule takes several. However, the idiosyncratic rule
only covers one meaning, whereas the most general rule covers an infi-
nite number. It is clear, therefore, that the probability of a acquiring a
particular rule given any sample of meanings increases with the general-
ity of that rule. The success of I-languages which contain general rules
seems secure.

The picture that emerges, then, is of the language of the population
acting as an adaptive system in its own right. Initially, the rules are
minimally general, each pairing one string with one meaning. At some
point, a chance invention will lead a learner to “go beyond the data”
in making a generalisation that the previous generation had not made.
This generalisation will then compete with the idiosyncratic rule(s) for
the same meaning(s). Given that generalisations are better replicators,
the idiosyncratic rules will be pushed out over time. The competition
will then be replayed amongst generalisations, always with the more
general rules surviving. (Notice that this picture of a move from holistic
protolanguage to an emergent syntactic system is similar to the one
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figure 1.7. The E-language domain acts as a bottleneck on the transmission
of I-language.

proposed by Wray (1998).)

The inevitable end state of this process is a language with a syn-
tax that supports compositionally derived semantics and recursion in a
highly regular fashion. The grammar for such a language appears to be
the shortest (in terms of numbers of rules) that can express the entire
meaning space. The shorter the grammar, the higher the generality of
each of the rules — the shortest grammar that can still do the job of
expressing meanings is therefore the one made up of optimal replicators.

We can think of the transformations between I- and E-language as
a bottleneck on the transmission of language over time (see figure 1.7).
Since the number of meanings that the learners are exposed to is al-
ways lower than the total number of meanings, a totally idiosyncratic
language cannot survive. In order to see this, we can visualise the con-
trast between idiosyncratic and syntactic languages in terms of types of
mappings between structured spaces. Figure 1.8 is a schematic repre-
sentation of a possible mapping between two spaces. This mapping does
not preserve structure from one space to the other. In other words, there
is a random relation between a point in the space and its corresponding
point in the other space.

Now, imagine that this mapping must be learned. In the diagram,
some of the pairings are shown in bold — if these where the only ones
a learner was exposed to, would that learner be able to reconstruct the
whole mapping? Not easily: for a finite space, the only way a random
mapping could be reliably learnt from a subset of pairings would be if
the learner had a very informative and domain specific prior bias to learn
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figure 1.8. A non-structure preserving mapping between two spaces with
spatial structure. The bold lines indicate an imaginary subsample of the
mapping that might be evidence for a learner. This mapping could only be
learnt by a learner with a very specific prior bias.

figure 1.9. A mapping in which structure is preserved. The bold lines indicate
an imaginary subsample of the mapping that might be evidence for a learner.
This mapping is more likely to be successfully learnt by a learner with a more
general prior bias.

that particular mapping. Even this is not possible where the spaces are
potentially unbounded.

Figure 1.9 on the other hand, shows a mapping in which structure in
one space is preserved in the other. Given the sample in bold, it seems
that a learner has a higher chance of reconstructing the mapping. A
learner that is biased to construct concise models, for example, would
learn this mapping more easily than that in the first figure. Importantly,
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this bias is more likely to be domain general than one that explicitly
codes for a particular idiosyncratic mapping. Furthermore a model can
be constructed that would map the spaces even if they were potentially
infinite in extent.

In the second set of simulations, as in real language, what is being
learnt is a mapping between a meaning space and a signal space both of
which are potentially infinite in extent. This means that it is in principle
impossible for a learner to acquire a language that looks like the mapping
of the first type, that is an idiosyncratic pairing of meanings and strings.
This is why the initial, random languages in the simulations are unstable
over time. This is not a feature of syntactically structured languages,
however. Structure in the mapping improves the survivability of that
mapping from one generation to the next.

What we are left with is a very general story about the (cultural) evo-
lution of mappings. Structure-preserving mappings are more successful
survivors through the learning bottleneck. This fact, coupled with ran-
dom invention of pairings in languages that have incomplete coverage of
the meaning space, and the unboundedness of the meaning and signal
spaces, leads inevitably to the emergence of syntax.

At the start of this chapter the approach taken here was contrasted
with the dominant approach in evolutionary linguistics, where the struc-
ture of language is taken to match closely with the structure of the lan-
guage faculty which in turn is shaped by natural selection. We can now
more precisely unpack the differences between these two perspectives on
the origins of syntax. In particular, the relationship between the model
of the acquirer and constraints on cross-linguistic variation are quite
different.

Traditionally, the Chomskyan language acquisition device (LAD) di-
rectly constrains what makes a possible human language by limiting di-
rectly what can or cannot be acquired. This limit is said to closely map
the observed constraints on variation (Hoekstra & Kooij 1988). Part
of the generative research program involves accounting for variation be-
tween languages explicitly within the model of the language acquirer.
In fact, Universal Grammar (UG) and the LAD are often treated as
synonymous within this tradition. It is not generally considered that
the dynamics of language acquisition and use impose further constraints
within the boundaries imposed by the structure of the LAD (although
see Niyogi & Berwick (1995) & Clark (1996) for interesting exceptions).

Figure 1.10 contrasts this view with that proposed in this paper. The
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&

figure 1.10. Two Venn diagrams showing the different approaches to ex-
plaining observed constraints on cross-linguistic variation. E is the set of all
logically possible languages, the gray area signifies the set of occurring human
languages. In the top diagram, the Chomskyan language acquisition device
constrains the learner directly and nothing else is required to explain the lim-
its on variation. In the bottom diagram, the language learning device is less
constraining, and the particular characteristics of human languages are the
end result of a historical evolution of languages in populations (represented
by arrows).

language learning device clearly does impose constraints directly in a
similar fashion — there are certain types of language that the learner
simply cannot acquire — however these constraints are far less severe
than those imposed by the Chomskyan model of the LAD. As can be
seen in the initial stages of the simulation, very un-language like systems
can be acquired by this learner. The constraints on variation are not
built into the learner, but are instead emergent properties of the social
dynamics of learned communication systems and the structure of the
semantic space that the individuals wish to express.

The theory presented here gives us a neat explanation of why human
languages use syntactic structure to compositionally derive semantics,
use recursion to express infinite distinctions in a digital way, have words
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with major syntactic categories such as noun and verb, and use syntactic
rules of realisation (such as ordering rules) to encode meaning distinc-
tions. However, it does not seem to allow us to understand more specific
universals. For example, why particular constituent orders are far more
frequent than others across the languages of the world (Hawkins 1983;
Dryer 1992).

Perhaps the best explanation for these types of universal should look
at the effect of parsing and generation on the transmission of replicators
(see Kirby 1999 and Kirby 1997 for details). On the other hand, at
least some of these word order constraints may eventually be explained
in terms of linguistic adaptation without appealing to processing (see,
Christiansen 1994 and Christiansen & Devlin 1997 for some suggestions
along these lines). X-bar theory — a sub part of UG which constrains
the structure of syntactic trees cross categorially (Jackendoff 1977) —
has been implicated in various word order universals. Daniel Nettle
(personal communication) has suggested that X-bar is just the sort of
over-arching generalisation that the theory put forward in this chapter
predicts. It can be characterised as a pair of phrase structure rules:

XP — Spec X' or XP — X' Spec
X' XYP or X' 5YPX

These rules are like standard context free rules except that X and Y are
variables that can range over the lexical categories in the language.

This use of variables in phrase structure rules is not possible with
the formalism adopted here, so this result is not possible in the simu-
lation. Nevertheless, if the language learning device were able to make
a generalisation such as that expressed by X-bar, we would expect it
to thrive as a replicator. More generally, we should expect languages
to behave in such a way that their word orders can be expressed in the
most compact way, since this will reflect the behaviour of the optimal,
most general, replicator. Dryer (1992) shows with a large-scale cross-
linguistic survey, that this is indeed the case; languages tend to order
their non-branching nodes on the same side of their branching nodes
across the phrasal categories of the language.

1.5 Conclusion

Compositionality and recursion are arguably the most basic features of
the syntax of language. These structural properties, along with the way
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it is transmitted, are what makes human language a unique natural
communication system. This chapter has presented an explanation of
the origins of the properties which does not require them to be built-in
as hard constraints on learning. This lifts the burden of explanation
away from the biological evolution of the human genome and instead
relies on very general properties of the dynamics of mappings that must
replicate over time through learning.

For a language to survive from generation to generation it must be
learned by individuals observing the behaviour of other individuals. The
sample of observations will be finite, yet the range of meanings that
individuals may wish to communicate about is likely to be very large
or infinite. This learning bottleneck leads inevitably to the emergence
of a language in which structure is preserved in the mapping between
semantics and strings in utterances.

The working model of linguistic transmission presented in this chap-
ter has provided a demonstration of this process of emergence; compo-
sitional, recursive grammars arise given a particular model of learning
and a particular model of semantics. Treating language as an adaptive
system in its own right, in which properties of information transmission
impact on its emergent structure, opens up new avenues of explanation
in linguistics. Before seeking a biological or functional explanation for a
particular feature of human language, or appealing to direct coding in
an innate acquisition device, we should be aware of what we might be
getting “for free” through the kinds of processes described here.
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A.1 Detalils of rule subsumption

This appendix gives a more thorough treatment of the rule subsumption
approach introduced in section 1.2.1. The algorithm uses two methods
of subsumption:

Merge If the two rules would be the same if two category symbols were
merged, then merge those categories. In other words, pick one of the
categories and rewrite the other one to be the same as it throughout
the grammar.

Chunk If the two rules would be the same if either one or both of
them chunked a sequence of terminals, then chunk those terminals.
Chunking involves creating a new rule made up of a substring of
nonterminals on the right hand side of the old rule, and adjusting the
old rule to refer to the new one.

Whilst rule subsumption through merging is straightforward, chunk-
ing is rather more difficult to implement. It is best to describe the
procedure step-by-step:

1. Take a pair of rules, r; and 72 from the grammar with the same left
hand side category symbol, C.
2. Can chunking can be applied to both rules?

(a) Do the left hand side semantics of the two rules differ in only one
position? If so, call the differences m; and msy. If there is no
difference, or if there is more than one difference then stop.

(b) Are there two strings of terminals that, if removed, would make
the right hand sides of the two rules the same? If so, call this
string difference A\; and A,. If there isn’t one string difference,
then go to step 3.

(c) Create a new category N.

(d) Create two new rules:

N/m1 — )\1
N/m2 — )\2

(e) Replace the old rules 71 and ro with one rule. This rule is identical
to 1 (or rq) except that A; (or A2) is replaced with C/x on the
right hand side, and m; (or my) is replaced with the variable x
on the left hand side.

(f) Stop.

3. Can chunking can be applied to just one of the rules?
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Can the left hand side semantics of the two rules can be unified?
If not, stop.

Is there a string of terminals A in one of the rules which corre-
sponds to a nonterminal label N/m in the other rule? In other
words, is this the only difference in the two rules’ right hand sides?
If not, stop.

Delete the rule containing the substring A.

Create a new rule:

N/m — A
Stop.

We can work through this chunking procedure using the example in
section 1.2.1.

1. start with the two rules, r; and ry:

S/eats(tiger,sausages) — tigereatssausages
S/eats(john,sausages) — johneatssausages

These have the same left hand side category symbol, S.
2. check to see if chunking can be applied to both of these rules.

(a)

()

(f)

the left hand side semantics differ in one position, so m; = tiger
and my = john.

the shortest pair of strings of terminals that could be removed
from both rules to make them the same is tiger and john, so
A1 = tiger and Ay = john.

we make up a new category name — for convenience, we’ll call it
N.

the two new rules are therefore:

N/tiger — tiger
N/john — john

the two old rules are replaced with a single more general one:
S/eats(z,sausages) — N/z eatssausages

stop.

With merging and chunking, the inducer can successfully discover
new rules that subsume pairs of rules that it has learnt through simple
incorporation. However, in practice it is useful to add an other proce-
dure to the induction algorithm which also makes rules more general.
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Wherever possible, the inducer tries to simplify its rules by utilising
other rules that are already in the grammar. So, for example, if we had
the following pair of rules:

S/loves(john,mary) — johnlovesmary
N/mary — mary

the inducer would simplify the first one to:

S/loves(john,z) — johnloves N/z
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