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Abstract 

In order to persist, language must be transmitted from generation to generation through a repeated cycle of use 
and learning. This process of iterated learning has been explored extensively in recent years using computa-
tional and mathematical models. These models have shown how compositional syntax provides language with 
a stability advantage and that iterated learning can induce linguistic adaptation. This paper presents an exten-
sion to previous idealised models to allow linguistic agents flexibility and choice in how they construct the se-
mantics of linguistic expressions. This extension allows us to examine the complete dynamics of mixed com-
positional and holistic languages, look at how semantics can evolve culturally, and how communicative con-
texts impact on the evolution of meaning structure. 
 

1   Introduction 
One of the most striking aspects of human linguistic 
communication is its extensive use of composition-
ality to convey meaning. When expressing a com-
plex meaning, we tend to use signals whose struc-
ture reflects the structure of the meaning to some 
degree. This property is the foundation upon which 
the syntax of language is built. It is natural, there-
fore, that an evolutionary account of human lan-
guage should contrast compositional communication 
with a non-compositional, holistic alternative. In-
deed, Wray (1998) has argued that holistic commu-
nication (which is still in evidence in particular con-
texts today) can be seen as a living fossil of an ear-
lier completely non-compositional protolanguage. 

A compositional syntax has clear adaptive advan-
tages – with it we are able to successfully communi-
cate novel meanings (in the sense that we may never 
have witnessed signals for those meanings in the 
past). Despite this, research over the past decade has 
suggested that compositional syntax may have 
emerged not because of its utility to us, but rather 
because it ensures the successful transmission of 
language itself (see e.g. Kirby, 2000). It is suggested 
that the process of linguistic transmission, termed 
iterated learning (Kirby & Hurford, 2002), is itself 
an adaptive system that operates on a timescale in-
termediate between individual learning and biologi-
cal evolution. Computational models of this process 
(e.g. Kirby, 2000; Batali, 1998) have demonstrated 
that syntactic systems can emerge out of random 
holistic ones without biological evolution, at least 

for particular assumptions about learning, produc-
tion and so on.  

Further evidence for the argument that iterated 
learning can explain features of syntax has been 
provided by idealised computational (Brighton & 
Kirby, 2001) and mathematical (Brighton, 2002) 
models of iterated learning in general showing that 
compositional languages have a stability advantage 
over holistic ones. These models compare two sce-
narios under a number of different parameters. They 
analyse completely holistic languages and com-
pletely compositional ones. The parameters that are 
varied relate to, on the one hand, the structure of the 
meaning space, and on the other, the number of 
training examples an individual is exposed to (also 
known as the bottleneck on linguistic transmission). 
The overall conclusion is that with highly structured 
meaning spaces and few training examples, compo-
sitional languages are more stable than holistic ones. 

2   Problems 
This foundational work on the cultural evolution of 
meaning-signal mappings through iterated learning, 
though important in demonstrating that language 
itself has significant adaptive dynamics, suffers 
from two significant drawbacks, which we will turn 
to below. 
 
2.1   Stability analysis 
 
Early models such as Batali (1998) and Kirby 
(2000) involved populations of individual computa-
tional agents. These agents were equipped with: 
explicit internal representations of their languages 
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(e.g. grammars, connection weights etc.); a set of 
meanings (provided by some world model) about 
which they wished to communicate; mechanisms for 
expressing signals for meanings using their linguis-
tic representations; and algorithms for learning their 
language by observing meaning-signal pairs (e.g. 
grammar induction, back-propagation etc.). 
 
Typically, these simulations initialise the population 
with no language, or a random pairing of meanings 
and signals and then allow the linguistic system to 
evolve through repeated encounters between speak-
ing agents and learning agents. 
 
There has been much work in building simulation 
models within this general iterated learning frame-
work (e.g. Batali, 1998; Kirby, 2000; Tonkes, 2001; 
Kirby & Hurford, 2002; Brighton, 2002; K. Smith, 
2003; Zuidema, 2003). The great advantage of this 
kind of modelling is that it allows the experimenter 
to demonstrate possible routes by which language 
can evolve from one qualitative state, such as holis-
tic coding, to another, such as compositionality.1 
The models show how fundamental features of lan-
guage can emerge in a population over time given 
reasonable assumptions about how linguistic behav-
iour may be transmitted. 
 
Models such as these tend to have a large range of 
parameters, and it is therefore reasonable to want to 
know the relationship between the emergent prop-
erty and the parameter space of the model. Once we 
understand this, we can eventually hope to uncover 
theoretical principals that may apply to iterated 
learning in general rather than the specific model in 
question. 
 
As mentioned above, two key parameters in the 
emergence of compositionality are: meaning-space 
structure (i.e. the set of things agents communicate 
about); and learning bottleneck2 size (i.e. the num-
ber of training examples agents are exposed to). 
 
Computational simulations indicate that it is impor-
tant that there is some kind of learning bottleneck 
for there to be any interesting linguistic evolution. 
To put it simply, only when training data is sparse 
will language evolve to be compositional. 
 

                                                 
1 The emergence of compositionality has received a lot of atten-
tion. However, it is important to note that other fundamental 
linguistic universals may well explicable within this general 
framework. The central message is that wherever there is iterated 
learning, there is potential for adaptation of the system being 
transmitted to maximise its own transmissibility. 
2 See Hurford (2002) for discussion of why the term “bottleneck” 
is appropriate, and for an analysis of different types of bottleneck 
in language evolution. 

This parameter is relatively straightforward to ex-
periment with, but meaning-space structure is far 
more difficult, and most of the simulations of iter-
ated learning simply chose some kind of system of 
meaning representation and stuck with it for all 
simulations. 
 
The work of Brighton & Kirby (2001) and Brighton 
(2002) was an attempt to get round this problem by 
exploring a large range of possible meaning-spaces 
and examining what impact they would have in an 
iterated learning model. 
 
In those papers – as in this one – a highly idealised 
notion of “meanings” is employed: meanings are 
simply feature vectors. A meaning-space is defined 
by the number of features F it has and the number of 
different values V over which each feature can vary. 
So, to communicate about a world where objects 
were either squares, circles or triangles, and could 
be coloured green, blue or red, agents would need a 
meaning-space with at least F=2 and V=3. 
 
A reasonable strategy for thoroughly exploring the 
role of meaning-space structure might be to run 
many iterated learning simulations, each with a dif-
ferent meaning space, and determine the trajectory 
of the linguistic system in each instance. This proves 
computationally costly, so Brighton and Kirby in-
stead looked at what would happen to either a com-
pletely compositional language or a completely ho-
listic one for each meaning-space. 
 
Firstly using a computational model, and then using 
a mathematical generalisation of this model, they 
were able to calculate how stable either language 
type was for all meaning spaces. Simplifying some-
what, the overall result was that compositional lan-
guages have a stability advantage over holistic ones 
for larger meaning spaces, especially where the 
number of features are high. 
 
This kind of simplification of the iterated learning 
process is very useful but leads to the first of our 
two problems. Whereas a standard iterated learning 
simulation can demonstrate a trajectory, or route, 
from holism to compositionality, the Brighton and 
Kirby idealisation can only tell us about the relative 
stability of end-points of such a trajectory. In other 
words, we don’t know whether there is a way to get 
to a stable compositional language from an unstable 
holistic one because we don’t know anything about 
the languages in-between. 
 
2.2   Fixed, monolithic meaning space 
 
A second problem with much research into iterated 
learning so far has been its reliance on a pre-existing 



meaning space provided for and shared by all agents 
in the simulation.3 The work described in the previ-
ous section makes strong claims about the likelihood 
of the emergence of compositional syntax given a 
particular prior space of meanings. But, where does 
this meaning space come from? It is assumed that 
biological evolution somehow endows the agents 
with a representational scheme prior to language, 
and if those representations are of sufficient com-
plexity, a compositional system of expressing them 
will follow naturally. 
 
Furthermore most, if not all, models assume that 
there is a single, monolithic system for representing 
meanings. Everything the agents in the simulations 
want to talk about can be expressed in the same 
format, be that a feature vector of particular dimen-
sionality, a predicate-logic representation, or a point 
on a real-number line etc. Equally, there is assumed 
to be one and only one meaning for representing 
every “object” in the agents’ world.4 
 
As with the study of the relative stability of “end-
points” in language evolution, a monolithic, fixed 
and shared meaning-space is a sensible idealisation 
to make. Modellers hold one aspect of the object of 
study constant – meanings – and allow another as-
pect – signals – to evolve through iterated learning. 
Much has been learned through these idealisations, 
but equally it is important to explore what happens 
if we relax these assumptions. 
 
3   A simple model 
 
In this paper I will set out a simple extension to the 
model in Brighton (2002) which allows us to look at 
what happens when agents have flexible meaning 
representations for objects. It turns out that this ex-
tension also allows us to move beyond a simple sta-
bility analysis of end-points of iterated learning and 
give us, for the first time, a complete view of the 
dynamics of iterated learning. 
 
3.1 Meanings 
 
Language can be viewed as a system for mapping 
between two interfaces (see, e.g., Chomsky, 1995). 
On the one hand, there is an articulatory/perceptual 
interface, which handles input and output of signals. 
On the other, there is a conceptual/intentional inter-
face, which relates linguistic representations to the 
                                                 
3 This is not true of the extensive work on symbol grounding 
carried out by, for example, Steels & Vogt, 1997; Steels, 1998; 
A.D.M. Smith, 2003; Vogt, 2003. 
4 The term “object” is used here by convention to stand-in for 
any communicatively relevant situation. In other words, an “ob-
ject” is anything that an agent may wish to convey to another 
agent through language. 

things we actually communicate about. It is primar-
ily the latter of these two that we are concerned with 
here. 
 
In the model, there is a predefined set of things 
about which the agents wish to communicate – we 
will call this the environment, E. The concep-
tual/intentional interface C consists of a number of 
meaning spaces CM VF !,  onto which every ob-

ject Eo!  in the environment is mapped. Each of 
these meaning spaces, in keeping with previous 
models is defined as a set of feature-vectors, such 
that each meaning space is defined by the number of 
features F it has (its dimensionality), and the number 
of values V each of these features can take (its 
granularity). 
 
Throughout a simulation run, every object in the 
environment is paired with a particular point in 
every meaning space. For the simulation runs de-
scribed here, this is set up completely randomly at 
the start of the run. Loosely speaking, we can think 
of this as giving an agent a number of different ways 
of conceiving an object. Note that each point in each 
meaning space can be mapped to zero, one or many 
objects in the environment. So, for example, there 
may be particular feature-vectors in particular mean-
ing spaces that are ambiguous in that they map to 
more than one object in the environment. 
 
The important point here is that agents are prompted 
to produce expressions for objects in the environ-
ment and not meanings themselves. Part of the task 
of the agent is to choose which of that object’s 
meanings will be used to generate the linguistic ex-
pression. It is this that is the novel extension to pre-
vious work. Previously, only one meaning-space 
was available, so expressing an object and express-
ing a meaning were the same thing. Now that the 
latter is under the control of the agent the use of 
meanings can be learned and, ultimately, itself be 
subject to cultural evolution through iterated learn-
ing. 
 
3.2 Learning 
 
In this model I will follow Brighton (2002, 2003) in 
considering the task of learning a compositional 
system to be one of memorising signal elements that 
correspond to particular values on particular fea-
tures. A single compositional utterance carries in-
formation about how to express each feature-value 
of the meaning expressed by that utterance. 
 
If we consider just a single meaning space, then 
learning a perfect compositional system proceeds 
exactly as in Brighton (2002, 2003). The learner is 
exposed to a series of R meaning/signal pairs 



),,,( 21 Rppp !  each of which represents a point in 
the space VF " . After this exposure, the learner is 
able to express at least as many meanings as are 
uniquely expressed in the training data. Note that 
this is likely to be less than R since meanings may 
be repeated. 
 
Is this the best expressivity that the learner can ex-
pect to achieve after learning? Not if the learner is 
exposed to a compositional language. The learner 
may be able to express novel combinations of fea-
ture-values as long as each feature-value occurs 
somewhere in the training data. 
 
Brighton (2003) gives the following simple ap-
proach to modelling the transmission of a composi-
tional language. The first step is to construct a 
lookup table recording how each feature-value is to 
be expressed. This table, ! , is an VF "  matrix of 
signal elements. In fact, in this model the actual 
nature of those signal elements is irrelevant. This is 
based on the assumption that the learner can cor-
rectly generalise a compositional language from the 
minimum exposure. Brighton terms this the assump-
tion of optimal generalization. (This idealises away 
from the task of decomposing the input signal into 
parts and identifying which parts of the signal corre-
spond to which parts of the meaning. We should be 
aware that, in a more realistic scenario, more data is 
likely to be required and furthermore, segmentation 
errors are likely to occur.) 
 
The benefit of this assumption is that we can simply 
treat each entry in the O matrix as a truth value: 

 

#
$
%

&
otherwise

observed is featureith   theof jth value  theif
, false

true
jiO  

 
When the entry jiO ,  is true, this means that the sub-
signal for the jth value of the ith feature has occurred 
at some point in the training data. 
 
On receiving some meaning/signal pair smp ,&  
the matrix is updated so that each of the feature-
values contained in m are logged in the O matrix. If 

),,( 21 Fvvvm !& , then: 
F  to1  ifor     , && trueiviO  

 
So far, this is simply a restatement of Brighton’s 
(2003) formalism. The novel feature here is just that 
there are multiple meaning-spaces, and therefore 
multiple O matrices to keep track of. To simplify 
matters for this paper, we will maintain the assump-
tion that learners are given meaning-signal pairs. 
That is, learners are able to infer which point in 
which meaning-space a speaker is expressing. It is a 

topic of crucial and ongoing research, particularly 
by those researchers looking at symbol-grounding, 
to develop strategies to relax this assumption (e.g., 
Steels & Vogt, 1997; A.D.M. Smith, 2003). 
 
So far, contra Brighton (2002, 2003), we have not 
looked at holistic languages. Holistic languages are 
those where meanings are unanalysed and each 
given distinct, idiosyncratic signals. Learners can-
not, therefore, generalise beyond the data that they 
are given. However, we can simply equate a holistic 
language with a compositional language for a mean-
ing-space with only one feature. The machinery 
described so far, is therefore sufficient to explore the 
difference between compositional and holistic lan-
guage learning – we simply need to provide agents 
with the relevant meaning-spaces. 
 
3.3   Language production 
 
We have specified an environment containing ob-
jects each of which are labelled with feature-
vectors drawn from each of a set of meaning-
spaces. We have set out a model of learning 
whereby sets of meaning-signal pairs given to a 
learning agent are transformed into O matrices, one 
for each meaning-space. 
 
In order to complete a model of iterated learning, it 
is necessary to provide agents not just with a way of 
learning, but also a way of producing behaviour for 
future generations of agents to learn from.  
 
Clearly, a particular meaning ),,( 21 Fvvvm !& can 
be expressed by an agent if, and only if, that agent 
has a way of expressing each feature-value using the 
language it has learned so far. In other words, iff 

FvFvv OOO ,2,21,1 ''' ! . 
 
It is important to note, however, that the agents in 
this model are not prompted to express a meaning. 
Rather, they attempt to produce expressions for ob-
jects in the environment. This means that an agent 
may have a choice of potential meaning spaces to 
employ when signalling about any one object. An 
object is expressible, therefore, if any of the mean-
ings associated with that object are expressible. If 
more than one meaning is expressible by an agent, a 
choice must be made. For the first simulations de-
scribed below, that choice is simply made at ran-
dom. 
 
The goal of language production in this model is to 
produce a meaning-signal pair. However, learning 
as described in the previous section actually makes 
no use of signals because of the assumption of opti-
mal generalisation. This means we can ignore the 
signal part of the signal-meaning pair. When a learn-



ing agent observes the behaviour of a speaker, the 
simulation need only note the set of meanings used. 
 
3.3 Simulation run 
 
A simulation run consists of the following steps: 
 

1. Initialise environment. Associate each object in the 
environment with a single random meaning in every 
meaning space. 

2. Initialise population. In this simple model, the 
population consists of a single speaker, and a single 
learner. At the start of the simulation, the O matrices 
of the adult speaker are initialised with patterns of 
“true” and “false”. The particular way in which they 
are filled depends on the experiment being run, and 
represents the initial language of the simulation. The 
learner’s O matrices are filled uniformly with 
“false” because learners are born knowing no lan-
guage. 

3. Production. An object is picked randomly from the 
environment. A list of candidate meanings – one 
from each meaning space – is compiled for the ob-
ject. The O matrices of the speaker are used to de-
termine which, if any, of these candidates the 
speaker can express. One of these is picked at ran-
dom. 

4. Learning. If the speaker has been able to find an 
expressible meaning, the learner takes that meaning 
and updates its own O matrix for that meaning 
space. 

5. Repeat. Steps 3 and 4 are repeated R times (this de-
fines the size of the learning bottleneck). 

6. Population update. The adult speaker is deleted, 
the learner becomes the new speaker, and a new 
learner is created (with O matrices filled with 
“false” entries). 

7. Repeat. Steps 3 to 6 are repeated indefinitely. 
 
The relevant simulation parameters are: size of bot-
tleneck, R; number of objects in the environment, N; 
the make-up of the conceptual/intentional system, C 
(i.e. the particular VF ,  values for each VFM , ); 

and the initial language (i.e. the O matrices for each 
meaning space in C). 
 
4 Results 
 
This simulation model can be used to explore the 
dynamics of iterated learning given multiple mean-
ing-spaces. Because, as mentioned earlier, holistic 
languages are identical to compositional languages 
for 1-dimensional meaning-spaces, it can also be 
used to examine how compositional communication 
can arise out of a prior holistic protolanguage. 
 

4.1 Meaning space stability 
 
As many previous models have shown, composi-
tional languages are more stable than holistic ones 
through iterated learning with a bottleneck. We can 
track expressivity of the agents’ languages in a 
simulation over generations given an initial com-
pletely expressive language that is compositional, 
and compare that with a simulation initialised with a 
completely expressive language that is holistic. 
 
iteration 0 1 2 3 4 5 6 7 8 
holistic 1 .45 .22 .13 .08 .02 .02 .02 0 
comp. 1 1 1 1 1 1 1 1 1 

 
This table shows expressivity (as a proportion of all 
the objects in the environment) over time for a simu-
lation with 100&N , 50&R , }{ 2,8MC &  and a 

simulation with 100&N , 50&R , }{ 256,1MC & . 

 
Unsurprisingly, the holistic language cannot survive 
in the presence of a bottleneck. The size of the bot-
tleneck affects the rate of decay of expressivity in 
the holistic language: 
 
iteration 0 50 100 150 200 250 300 

R=100 1 0 0 0 0 0 0 
R=200 1 .15 .1 .06 .06 .04 .02 
R=300 1 .3 .21 .16 .16 .16 .12 
R=400 1 .61 .43 .38 .34 .32 .31 

 
As in previous models, this demonstrates once again 
the crucial advantage a language gains from a com-
positional syntax. 
 
4.2 Complete holistic/compositional dy-

namics 
 
Recall that one of the motives for this extension to 
previous work to move beyond simple stability 
analysis to see the complete dynamics of the move 
from holism to compositionality. To do this, we can 
simply run simulations with two meaning spaces 
instead of one, such as: },{ 256,12,8 MMC & . 

 
A particular point in the space of possible languages 
can be described in terms of the proportion of ob-
jects that can be expressed using the compositional 
language, 2,8M  and the proportion of objects that 

can be expressed using the holistic language, 
256,1M . 

 



 
 

Figure 1a,b: Complete dynamics for languages that are partially holistic and partially compositional, without invention and 
with invention. Each point represents a language with a particular combination of holistic and compositional signals. Each 
arrows show the direction and magnitude of movement in this space after a single instance of learning, and represents the 
average of 100 simulation runs. (The gaps in the graph result from points in this space that cannot be constructed for an envi-
ronment of 100 objects.) 
 
 
The complete dynamics for all points in holis-
tic/compositional space is visible in figure 1a. The 
arrows show the magnitude and direction of change 
after one iteration of the model for that particular 
combination of holistic versus compositional ex-
pressivity. There is a single attractor at (0,0). In 
other words, the inevitable end state is one where no 
objects are expressible either holistically or compo-
sitionally. 
 
The reason for this is obvious: once a word is lost 
from the language, there is no way of getting it 
back. In fact, the agents rely on the expressivity of 
the language that is injected at the start of the simu-
lation. To get round this, most iterated learning 
models allow agents to “invent” new expressions. 
To model this, a new parameter is added – the in-
vention rate I. This gives the probability that, on 
failure to find any way of expressing an object, an 
agent will pick a meaning space at random and in-
vent an expression for the relevant meaning in that 
space. 
  
Figure 1b shows how an invention rate of 1.0&I  
affects the dynamics of iterated learning. Now, the 
single attractor is the completely compositional lan-
guage. This demonstrates that there is a clear route 
from all parts of the language space towards a com-
pletely compositional language, through intermedi-
ate mixed languages. 
 
As has been shown before, the size of bottleneck is a 
crucial determinant of whether compositionality will 
replace holism. If the size of the bottleneck is in-
creased, holistic utterances no longer have a disad-

vantage and the movement to the left-hand side of 
these plots is removed. It is the fact that language 
must pass through a learning bottleneck as it is 
transmitted from generation to generation that 
causes it to adapt and causes idiosyncratic non-
compositional expressions to die out. 
 
4.3 The evolution of meaning spaces 
 
The second motivation for the current model was to 
see how iterated learning might result in adaptation 
of the meanings of expressions as well as the form 
of the expressions themselves. Previous models used 
a monolithic, fixed meaning space, but the current 
model allows for any number of meaning spaces to 
exist concurrently. An agent’s learning experience 
(and hence, ultimately, its cultural inheritance) de-
cide the structure of the meaning used to express an 
object in the environment. 
 

 
 
The graph above shows an example simulation run 
with the following initial parameters: 
 



},,,,,,,{
,50,100,1.0

2,83,73,63,54,46,316,2256,1 MMMMMMMMC
RNI

&
&&&

 
This table shows the pattern of meaning space usage 
averaged over 100 simulations with these parame-
ters measured at 50 generations: 
 

features 
values 

1 
256 

2 
16 

3 
6 

4 
4 

5 
3 

6 
3 

7 
3 

8 
2 

average 
expressivity 0 0 0 .11 .29 .15 .03 .45 

 
Despite being identical initially, agents end up using 
different systems of meaning for expressing objects 
in the environment in each simulation. In some runs, 
such as in figure 6, multiple meaning spaces remain 
partially expressive and stable. This means that 
agents may have different ways of expressing the 
same object. Real languages have different ways of 
carving up the world, and real speakers have differ-
ent ways of expressing the same message. This 
simulation demonstrates a mechanism by which this 
can be acquired and can evolve culturally. 
 
Are there any generalisations that can be made 
about the particular linguistic systems that emerge 
through this evolutionary process? A clear answer to 
this requires further research, but it may be that the 
meaning space adapts to structure in the environ-
ment. In the current model, the pairing between ob-
jects and points in meaning spaces is initialised ran-
domly with uniform probability. A future version of 
the model will allow the experimenter to populate 
the environment with objects with non-uniform dis-
tribution in meaning space. 
 
4.4 Inexpressive meaning spaces and 

the role of context 
 
In this model, there is a many-to-one mapping from 
objects in the environment onto meanings in any 
one meaning space. This means that the simulation 
can be set up in such a way that agents can produce 
expressions that are hugely ambiguous. Conceiva-
bly, a meaning space could be available that mapped 
all the objects in the environment onto one point. 
We can think of an agent using such a meaning 
space as expressing every object as “thing”. 
 
What happens in the iterated learning model when 
these “inexpressive” meaning spaces are included? 
An experiment was run with the following parame-
ters:  

}M,M,{MC
50,R100,N0.1,I

2,28,21,256&
&&&

 

 

In this situation, the agents end up expressing all 
100 of the objects in the environment using the two-
by-two meaning space. To put it another way, they 
use two word sentences with a vocabulary of four 
words. This kind of language is very stable since it 
requires very little data to learn. 
 
This seems a rather implausible result. In reality, 
language is used to communicate rather than merely 
label objects. To simplify somewhat, in a particular 
situation, a speaker may attempt to draw a hearer’s 
attention towards one of a range of possible objects 
in the current context.5 If all the objects in the con-
text map to the same meaning in the language, then 
no expression could be possible that would success-
fully direct the hearer’s attention. Only if the context 
size was minimised could an inexpressive meaning 
space hope to discriminate the intended object from 
the others, but in the limit this essentially renders 
communication irrelevant. If there is only one pos-
sible object to talk about, then the hearer will al-
ready know what it is. 
 
Contexts can be added to the simulation model rela-
tively easily. Speakers are given a target object and 
a number of other objects that form the context. 
When choosing a meaning space to use to convey 
the target, speakers will reject meanings that fail to 
discriminate the target from one or more of the ob-
jects in the context. 
 
Repeating the previous simulation with a context of 
5 objects leads to the domination of the expressive 
eight-by-two meaning space over the inexpressive 
two-by-two one. This result demonstrates once 
again how iterated learning can result in language 
adapting over a cultural timescale to the particular 
constraints placed on its transmission. 
 
5 Conclusions 
 
In this paper I have shown how previous models of 
iterated learning which used monolithic meaning 
spaces can be extended to deal with a more flexible 
notion of meaning. By allowing agents choice over 
the semantics of linguistic expressions, we can see 
how meanings as well as signals evolve culturally. 
 
This extension has allowed us to expand on earlier 
analyses of the relative stability of completely com-
positional versus completely holistic languages to 
look at the complete dynamics of a space of lan-
guages that are partially compositional. In addition, 
we can look at far more complex systems with am-
biguity of meaning, varying degrees and types of 
                                                 
5 Recall that “object” here is merely a term of convenience. We 
might wish to gloss this with “communicative intention”. 



compositionality and semantic structure, and exam-
ine how communicative contexts affect the way 
language is transmitted. 
 
There is much work to be done in this area – I con-
sider this model to be a preliminary investigation 
only. Many possible extensions of the model could 
be worth pursuing. For example, the results suggest 
a puzzle: why aren’t all languages binary? The bi-
nary meaning spaces seem to be highly stable in the 
model, but nothing like this exists in natural lan-
guage. What is needed is a more realistic treatment 
of semantics and also considerations of signal com-
plexity. Natural language semantics does not take 
the form of fixed-length vectors, and there are plau-
sible pressures to keep signals short. 
 
Another interesting direction would be to combine 
this kind of idealised model with the mechanisms 
for collaborative meaning construction and ground-
ing developed by those working with robotics mod-
els (e.g., Steels & Vogt, 1997; Steels, 1998; Vogt, 
2003; Cangelosi, 2004). In this manner, we may 
begin to be able to relate abstract notions of expres-
sivity, learnability and stability with the particular 
features of natural language semantics grounded in 
the real world and embodied in human agents. 
 
The overarching conclusion of this line of work is 
that iterated learning is a surprisingly powerful 
adaptive system. The fact that language can only 
persist if it is repeatedly passed through a transmis-
sion bottleneck – the actual utterances that form the 
learning experience of children – has profound im-
plications for its structure. This point has been made 
clear before in relation to the syntax of language. 
The model in this paper shows that the semantics of 
language are also likely to have been shaped by iter-
ated learning. 
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