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A Possible Role for Selective Masking
in the Evolution of Complex, Learned
Communication Systems

Graham R. S. Ritchie and Simon Kirby

20.1. Introduction

The human capacity for language is one of our most distinctive character-
istics. While communication systems abound in the natural world, human
language distinguishes itself in terms of its communicative power, flexibility
and complexity. One of the most unusual features of human language, when
compared to the communication systems of other species, is the degree to which
it involves learning. Just how much of language is innate and how much is
learned is an ongoing controversy, but it is undeniable that the specific details
of any particular language must be learned anew every generation. We do, of
course, bring a great deal of innate resources to bear on our language learning
process, and the results these innate biases have on the development of languages
may explain a great deal about the structure of the languages we see today. But
still every child in every new generation must go through a lengthy process of
language acquisition if they are to become normal language users.

Once in place, this inter-generational process of language acquisition and
use, or iterated learning (Kirby and Hurford, 2002) can give rise to cultural
evolution, which studies have shown may explain many prominent phenomena of
human language, including the emergence of dialects and, by extension, separate
languages (Livingstone, 2002), regular and irregular word forms (Kirby, 2001)
and compositional syntax, (e.g. Brighton, 2002).

The emergence of learning can therefore be seen as a major transition in the
evolution of language and we would like to better understand the evolutionary
pressures and factors which caused this transition. A natural point at which to
start such an investigation is to look at the communication systems of other
animals to see if there are any parallels which might illuminate the relevant
ecological facfors. Much comparative research has been carried out with the
non-human primates, but despite some fascinating results, it seems that their
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natural communication systems are very different to language, including the fact
that learning plays a much less prominent role. In fact it appears that vocal
learning systems have evolved in only three groups of mammals: humans, bats
and cetaceans, and three groups of birds: songbirds, hummingbirds, and parrots
(Jarvis, 2004) (though there is initial evidence of vocal learning in other species,
including some elephants and seals.)

In this paper we concentrate on bird song as it has many striking parallels
with language, particularly the way in which it is learned, as Darwin noted in
The Descent of Man:

The sounds uttered by birds offer in several respects the nearest analogy to language,
for all the members of the same species utter the same instinctive cries expressive
of their emotions; and all the kinds that sing, exert their power instinctively; but the
actual song, and even the call notes, are learnt from their parents or foster-parents,
(Darwin, 1879)

Since Darwin’s day much research has been carried out into bird song and, to
take Tinbergen’s four perspectives of ethology, we now know a great deal about
its mechanism, development, function and evolution. However, despite much
research, in general the evolutionary function of song learning remains unclear
(Slater, 2003). The parallels between bird song and human language have also
been further elaborated as modern techniques have allowed us to establish the
neural mechanisms of both song and language (Doupe and Kuhl, 1999).

In this chapter we present a computational model of the evolutionary history
of the Bengalese finch which demonstrates how an increase in song complexity
(in some sense) and increased influence from early learning could evolve
spontaneously as a result of domestication acting to mask the natural selection
pressure on song behaviour. We argue that this may provide an insight into
how increased reliance on vocal learning could evolve in other communication
systems, including human language.

20.2. A Case Study

Recent studies by Kazuo Okanoya of a domesticated species of finch, the
Bengalese finch (Lonchura striata var. domestica), and its feral ancestor, the
white-backed munia (Lonchura striata) which still lives in the wild throughout
Asia, provide an interesting case study of the interaction of learning and evolution
in bird song. The Bengalese finch sings a song with complex' finite state syntax
which is heavily influenced by early auditory experience. Surprisingly, the munia
sings a strikingly simpler, more linear song which is less influenced by early

! Okanoya defines song complexity as the song linearity, i.e. the total number of unique
song notes divided by the number of unique note-to-note transitions. We are not entirely
satisfied with this as a measure of complexity, as discussed in section 4.2, but we use the
term in Okanoya’s sense throughout this paper.
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learning. In other words, in a relatively short period of domestication, there have
been radical changes in song behaviour. This has happened even though the
domesticated species has been artificially bred for plumage rather than song.

Okanoya (2004) has identified the neural mechanism underlying this difference
in behaviour and has shown that while Bengalese chicks are able to learn the
songs of munia tutors, munia chicks are not able to learn all aspects of the more
complex Bengalese song, demonstrating that there is a physiological, as opposed
to cultural, basis for this difference.

20.2.1. Okanoya’s Hypothesis

As experiments have shown that both female munias and female Bengalese
finches prefer the more complex song, Okanoya (2002) argues that it is sexual
selection which drove the increase in complexity. He argues that domestication
freed the Bengalese finch from the pressure of predation and other pressures
associated with life in the wild which had previously held song complexity in
check. According to Okanoya, the more complex song of the Bengalese finch
may therefore be seen as an honest signal of fitness (Zahavi, 1975); a fitter
bird can afford a more complex song. Sasahara and Ikegami (2004) show with
a computational model of the finch data that, under some assumptions about
female preferences and perception, song complexity could indeed increase as a
result of sexual selection,

20.2.2. Deacon’s Hypothesis

Reviewing the same data, Deacon (p.c.) agrees that domestication masked the
natural selection pressure keeping the munia’s song simple, but argues that the
increase in complexity happened without direct selection on the trait. Essentially,
he posits that domestication shielded the trait from selection which allowed
random genetic drift to erode innate song biases in the munia. This allows previ-
ously minor influences, such as mnemonic biases and early auditory experience,
to have more of an effect on song structure and learning, which results in the
various neural modules involved in song production and learning becoming
increasingly de-differentiated. Deacon goes on to argue that this process of
masking and subsequent de-differentiation is a potential explanation for the
evolution of complex functional synergies such as the neural mechanisms for
song production now present in the Bengalese finch, and, he argues, in the human
capacity for language.

The concept of selective masking and its effect on the evolution of language
are explored in more detail in {Deacon, 2003). Wiles et al. (2005) demonstrate
with a computational model how this kind of masking (and later unmasking)
effect may have played a role in the functional integration of groups of genes
underlying complex traits, e.g. the mammalian colour vision system.
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20.3. A Computational Model

In order to evaluate Deacon’s hypothesis and to try to establish if such behaviour
could evolve spontaneously as a result of domestication, we have developed a
computational model of the finch data. The model is designed to be reasonably
biologically plausible, and also general enough that it could be extended to
other species. The model works with an evolving population of agents, or birds,
and the main stages in the simulation are listed here, details of each stage are
given below:

Birth The bird’s song filter is built up from its genotype as described in
section 3.1.

Development The bird is exposed to e songs from its environment, and, using its
filter, selects ¢ songs from which it will learn (its training set) as described in
section 3.2. The bird then uses the learning algorithm described in section 3.3
to learn the song grammar it will use to sing throughout its life.

Adulthood The bird is tested in f fitness trials, as described in section 3.4 to see
how many times, using its filter, is can correctly recognise a bird of its own
species and how many times it is correctly recognised by a bird of its own
species. These values are added to give a bird’s fitness score.

Reproduction Parents of the same species are selected probabilistically according
to their fitness score and their chromosomes are crossed over using one-point
crossover with probability pCO (set to 0.7 for all results provided here), to give
a new child. Individual genes are mutated with probability pMur (set to 0.05
for all results provided here, lower values have qualitatively similar results
but the simulations take considerably longer to show the same effects). The
mutation operator used is the ‘Reflect’ operator described in (Bullock, 1999).

Death Each bird in the population is sampled s times and the resulting
songs are stored for the next generation to learn from. All of the current
birds in the population are removed and their children become the new
population.

20.3.1. The Song Filter

A bird is modelled as having a genetically coded note? transition matrix, which
specifies a transition probability from each note to every other note used in the
simulation, including a probability for the first and final notes. The total number
of notes is a parameter of the simulation, numNotes, but in all results provided
here this was set to 8, i.e. the notes from a alphabetically through to 4, this
value was chosen as it appears to be the number of unique notes identifiable

21t should be noted that while we use the term ‘note’ throughout this chapter, this is
not intended to refer to a particular acoustic note, rather we simply use it to denote an
atomic song element that can be reliably differentiated from other elements which appear
in the song.
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in both the Bengalese finch and munia’s songs (Okanoya, 2002). The matrix is
coded for by a chromosome which has one real valued locus for each entry in
the matrix which can vary between O and 1. This chromosome will thus have
(numNotes+1)? loci, the 1 is added to include the transitions at the beginning
and end of the song. To construct a matrix from the chromosome we take each
numNotes + 1 loci of the chromosome in turn, and normalise the values to give
a probability distribution for each row of the matrix (i.e. we sum the values
of each numNotes + 1 loci and then divide each value by this sum to give a
probability). An example matrix, and the chromosome that codes for it is shown
in table 20.1.

The transition matrix serves one main purpose; to establish the probability that
a given song is one of the bird’s own species song. This is done by establishing
the average probability of each note transition in the song, as shown in equation 1
which defines the preference a given matrix m, has for a particular song s, in
this equation n is the number of note transitions in s, and m,(¢;) is the entry in
m, for the ith transition of s,. For example the preference value the matrix in
table 1 gives for the song cab, which has the transitions S-c, ¢-a, a-b and b-E,
is 202+08240891045 — () 695, while the preference for the song ach is 0.043. Note
that we always include the transition to the first note and from the last note,
so the empty song “’ has a single transition S-E, for which this matrix has a
preference value of 0.15.

Zzn:l m.(t;)

preference(m,,s,) =
n

(1)
The matrix can be thought of as a song ‘filter’. A song with a high probability
will be more likely to pass though the filter than one with a lower probability,
in our example cab would be much more likely to pass through the filter than
ach. 1f the matrix has a single high probability transition for each note this can
be thought of as a strong filter, as it will only accept songs which contain these

TABLE 20.1. An example note transition matrix and the chromosome that codes for it.
numNotes here is set to 3 meaning that the chromosome will have (34 1) = 16 loci (we
used 8 notes in our simulations, and hence chromosomes with 81 loci). The S indicates
the start of the song, and the E indicates the end of the song.

a b C E

0.08 0.15 062 0.15
0.11 0.89 0.00 0.00
0.05 0.10 040 045
0.82 0.09 0.00 0.09

o o W»

0.1 0.2 0.8 02 0.1 08 00 00 01 0.2 0.8 09 09 0l 00 01
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transitions. If the matrix has even probabilities for each transition it is considered
a weak filter as it accepts all songs equally.

We can measure the strength of the filter explicitly by calculating the
entropy for each transition distribution (i.e. each row in the matrix), using
Shannon (1948)’s measure. This will result in a value which ranges from 0 to
log,(nValues), where nValues is the number of probabilities in row r, (i.e. the
number of columns in the matrix). We then normalise this value into the range
0 to 1, as shown in in equation 2, which defines the normalised entropy for a
given row r,, in this equation p; is the probability of the ith transition in r,. The
overall strength of a matrix m, is then calculated as the average entropy of each
row r in the matrix, as shown in equation 3. A filter strength of O means that the
filter will only accept one song while a strength of 1 means that the filter will
accept all songs equally. As an example, the matrix in table 20.1 has a strength
value of 0.56.

— Ve p. log (p;)

t = 2
entropy(r,) log(nValues) @
nRows
A t i
strength(m.) = Dint ;n ropy(r;) (3)
nRows

This filter is intended to model the preferences many songbirds have for their
species specific song (Catchpole and Slater, 1995). In the model a bird uses its
filter for two purposes:

1. To select its training set (the songs it will later use to learn from) from the
songs it is exposed to during infancy.

2. To judge whether another bird is a member of the same species for mating
or territorial defense.

In this respect, this model is similar to those used in Lachlan’s models
of the ‘cultural trap’ in bird song (Lachlan and Slater, 1999; Lachlan and
Feldman, 2003). This seems a reasonably plausible assumption, as it is known
that some songbirds do have an innate preference for conspecific song both
when learning songs as a nestling and also for later mate selection (Catchpole
and Slater, 1995).

20.3.2. Selecting the Training Set

The infant bird is exposed to e environmental songs to select its ¢ training songs
from, both e and f are parameters of the simulation, but were set to 50 and
5 respectively for all results provided here. 5 seems a rather low value of 7,
but the learning algorithm is very computationally intensive and so a low value
is used to speed up the simulation. The e environmental songs are randomly
selected from the songs sampled from the previous generation, to compose this
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set each bird is sampled s times, another parameter which is set to 5 here, so for
a population size popSize of 100, as used here, this will contain 500 songs.

The infant bird is exposed to each of the e songs in turn and uses its filter
to compute the probability it will be accepted. During experimental runs it was
determined that checking that the song is accepted once did not impose enough
of a pressure for the bird to correctly select conspecific song and so a song is
only added if it is accepted by the filter twice successively. If the bird has not
picked f songs after being exposed to all e songs, the process is repeated until
t songs have been selected. The training songs are then fed into the learning
algorithm described below.

20.3.3. Song Learning

Song learning is modelled as minimum description length (MDL) induction of
a probabilistic finite state machine (PFSM), closely following the algorithm
described in (Teal and Taylor, 2000). Induction of finite-state machines was
chosen to model learning as Okanoya (2002) argues that the songs of both
munias and Bengalese finches can be usefully described by a finite-state syntax.
The algorithm works by firstly establishing the maximal PFSM that explicitly
represents each song in the training set, the prefix tree. The algorithm then
searches for nodes which can be merged which will reduce the MDL of the
overall machine, whilst also ensuring that the PFSM remains deterministic.
The MDL measure takes into account the amount of information (measured by
the number of bits) required to code for the machine itself, and also to code for
each of the training songs in terms of the machine. Essentially the algorithm
searches for the most parsimonious machine in terms of the data. This approach
allows a bird to generalise from its training set, whilst also always being able to
reproduce each of the songs it learned from. The reader is referred to (Teal and
Taylor, 2000) for a more detailed description of the algorithm used. The only
difference between Teal and Taylor’s and our approach is that we also take into
account the probability of each note transition, given the probabilities of each
transition in the training set.

20.3.4. Calculating a Bird’s Fitness

To establish a bird’s fitness we want to check both that its filter allows it to
correctly identify its own species, and that its song is correctly identified by
other birds of its species. This seems a reasonable model of the pressures acting
on song in the wild (Catchpole and Slater, 1995).

To calculate an individual bird b,’s fitness we perform f fitness trials, a
parameter set to 250 for the results provided here. In each fitness trial we get b, to
produce a song and we then randomly select another member of the population,
b; and check that b; correctly recognises the song using its filter. We also get b;
to produce a song and check that b, correctly recognises the song with its filter.
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Every correct recognition means that b,’s fitness is incremented by 1. With f set
to 250, this means that the maximum fitness achievable is 500, or generally 2 1.

20.3.5. Modelling the Finch Data

This is a fairly general model of bird song, and so we need to set it up to
match the data available on the Bengalese finch and the munia as closely as
possible. The simulation passes through 3 main phases, each of which runs for
500 generations. The phases are described below.

Phase 1 We know that the white-backed munia has a very stereotyped song and
that it seems to only be able to learn songs that match its species-specific
song fairly closely (a munia cross-fostered with Bengalese parents is not
able to learn all aspects of its tutor’s song). In our model this corresponds
to the munia having a strong filter. To simulate this state we seed the
environmental songs with a single song type, e.g. abcdef. We then run
the simulation for 500 generations using the fitness function and learning
algorithm described above. As the environment songs are entirely identical
the songs that any bird will learn from are always the same, and so they will
always induce the same PFSM. This is not meant to be biologically plausible,
we simply want the population to develop strong filters for a particular simple
song type.

Phase 2 At the end of phase 1 we have a population of birds who sing a
stereotypical song and produce offspring with a strong genetic bias to learn
that song. To test if the filter can indeed help young birds recognise the
appropriate song to learn from in the second phase of the run we start
introducing random songs into the bird’s environment, this is intended to
model hetero-specific song in the environment. We model this by replacing
10% of the s sampled songs with randomly generated songs which use the
same notes as the current population and which are constrained to within the
same length. We realise that hetero-specific songs are unlikely to be truly
‘random’ in a real environment and so this may be an unrealistic modelling
decision, but we simply want to model some degree of noise in the acoustic
environment which the population should be able to filter out. This seems
reasonable to us as if a population of birds really had a completely reliable
set of songs to learn from every generation we would expect them to have
lost any bias to conspecific song as this would be unnecessary, every song
they heard would be conspecific, but this doesn’t match the biological data.
An alternative strategy that we have experimented with (but not used here)
is to randomly ‘mutate’ notes from the songs sampled at the end of each
generation with some low probability, and tests show that this produces
qualitatively similar results to those provided here, but runs take much longer
to show the same effects.

Phase 3 We model domestication of the population simply by ceasing to
calculate fitness, but we continue to perform the crossover and mutation
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operations. The seems a reasonable model of domestication, as in captivity
the birds no longer have to recognise their own species to successfully
mate or defend their territory as the mating is now controlled by humans
and they are kept in aviaries. Domestication can thus be seen to mask the
selection pressure on these functions. We continue to introduce 10% of
random songs into the environment each generation, as it seems a reasonable
assumption that the birds will still be exposed to hetero-specific song, or at
least other extraneous sounds, in captivity. Experimental results of this setup
are described in the next section.

20.4. Results

The graphs in figure 20.1 shows several measures taken over the course of each
of the three phases described above.

The first graph shows the change in the average population fitness plotted
against the change in filter strengths through the three phases. Fitness values are
not calculated for the population in phase 3. The filter strength is calculated as
described in equation 3.

The second graph shows our various complexity measures plotted against each
other over the entire run, the first of these the average grammar encoding length
(GEL) of the population’s PFSMs, this is a measure of the size, in bits, it would
take to encode a PFSM using the measure defined in (Teal and Taylor, 2000).
The second measure is the average song linearity of the population’s songs
(Okanoya’s definition of complexity), defined as the number of unique notes in
each song divided by the number of unique note to note transitions. The final
measure is the average linearity of the population’s PFSMs calculated simply
as the number of states divided by the number of transitions. A completely
linear PFSM would thus have a linearity of 1, while a maximally non-linear
PFSM would have a linearity equal to 1 over the number of transitions in
the PFSM.

Two example PFSMs taken from the population at the end of phase 2 are
shown in figure 20.2, and two PFSMs from the end of phase 3 are shown
figure 20.3. The GEL and PFSM linearity values for each machine is also given.

20.4.1. Analysis

The results in the first graph demonstrate that the strong filters built up in
phase 1, as shown by the increase in filter strength®, enable the birds to filter out
the hetero-specific songs introduced in phase 2 without any fitness decrease. We
see that all 5 measures stay roughly the same throughout this phase, indicating
that this is a fairly stable state. When we ‘domesticate’ the population in phase 3

3 Recall that the strongest filter would give a value of 0, and the weakest 1.
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FIGURE 20.1. These results are averages taken over 10 separate runs of the simulation with
a different random number generator seed for each run. It should be noted that all these
measures have been normalised into the range 0 — 1. These graphs therefore only shows
the relative change in each of the measures over the course of a run, not the absolute
values of each measure. We have also smoothed the lines in the graph to better allow us
to see the overall trends. More detailed results are available upon request. (PFSM is a
probabilistic finite state machine, and GEL is the grammer encoding length of a PFSM.)
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FiGure 20.2. Two example PFSMs from the population at the end of phase 2.
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F1GURE 20.3. Two example PFSMs from the population at the end of phase 3.

we see a significant change in its behaviour. Immediately we see that the filters
begin to weaken, and we see that the average GEL rises steadily throughout the
phase indicating that the population’s PFSMs are getting larger and the birds
have a more varied song repertoire. At the same time we see both the song,
and underlying PFSM linearity drop, indicating that the songs a bird will sing
have comparatively more varied note transitions, i.e. a more ‘complex’ song in
Okanoya’s sense.

This behaviour seems to be a result of the fact that the strength of the
population’s filters is no longer being selectively maintained, that is they have
been masked from selection. This allows mutations to accumulate and for the
filters to become steadily weaker. This allows some of the hetero-specific songs
to pass though the filter when a bird is selecting its training set, which results in
the bird inducing a more varied PFSM. Essentially the domesticated population
is able to learn from much more varied sources and so early auditory experience
has much more of an effect on adult song behaviour.

These results are comparable to the masking phase described by Wiles
et al. (2005). Their model, however, goes further than ours and shows that if the
selection pressure were later unmasked this could result in a selection pressure
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for any other abilities able to help the organism survive in the new environment
(e.g. colour vision). It would be interesting to investigate what might happen to
the Bengalese finch’s song if its environment changed substantially again, e.g.
if a population was released back into the wild.

20.4.2. Song Complexity?

Okanoya (2002) argues that the Bengalese finch has a much more ‘complex’
song than the munia. As mentioned earlier, his measure of complexity is the
song linearity. He finds that the average song linearity of the munia is around
0.8 while the Bengalese finch song has a value of around 0.4. We provide results
for this measure over the course of our simulations in the graph above, but on
average we also see a higher value, around 0.95, for the ancestral population and
a lower value, around 0.6, for the domesticated population at the end of our run,

While this measure seems a reasonably intuitive measure of song complexity
(the more varied a song is, the more complex it is), it should be noted that this
measure will classify an entirely random song as maximally complex. We do
not want to equate randomness with complexity, but we find it hard to define
a measure that can differentiate between the two. Any standard measure of the
information content of a song will not be able to do so; a random song is
maximally informative in information-theoretic terms. However we consider that
two measures, the GEL of a bird’s PFSM taken together with the linearity of the
PFSM provide a reasonable estimate of the complexity of a song. A PFSM with
a very small GEL and a low linearity is likely to produce more random songs,
as it approaches a one state PFSM with multiple transitions back to the same
state. A PFSM with a large GEL, but a very high linearity (as we see in the
ancestral population in the model) will produce an entirely linear song. A PFSM
with a large GEL and a relatively low linearity will produce songs that we are
more happy to refer to as complex, as the GEL indicates that it has many states,
and so different notes will be used in different contexts, but each state also has
several transitions which means that different transitions can be made from each
context. Our results demonstrate that the domesticated population does have a
higher GEL and a lower PFSM linearity than the wild population and so we
are tentatively happy to agree that domestication has caused an increase in song
complexity. However, we are still working on developing a more satisfactory
measure of song complexity.

20.4.3. Comparison with the Biological Data

Comparing these results with the data available for the Bengalese finch we find
that the model does seem to capture some of the phenomena involved. Okanoya
has shown that a munia chick which is not exposed to conspecific song will not
sing a normal song, which seems to fit with the model. He has also shown that
while Bengalese chicks can readily learn munia songs, munia chicks cannot learn
the more complex Bengalese songs. In the model this difference is attributable
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to their different filters. The difference in the values for the song linearity in the
ancestral and domesticated populations also seem to match fairly well.

As it stands though, the model does not explain why the female munia prefers
the Bengalese song. We would argue that a bias for complex song may have
been latent in the munia, and the fact that the munia females prefer the more
complex song does not prove that this was the driving force for the change
in song behaviour, although introducing such a preference into the model may
help to tease these pressures apart. Okanoya (2004) demonstrates that the NIf
region of the Bengalese finch’s brain is necessary for it to be able to sing the
more complex song; when surgically lesioned a Bengalese finch with previously
complex song will sing a simpler, more munia-like song. We would argue that
the model remains neutral to this datum, as it is possible that the munia does
have this pathway present in its brain but, because it only ever learns a simpler
song, does not use it.

20.5. Discussion

Our results demonstrate that, as Deacon initially proposed, an increase in song
complexity (in some sense) and increased influence from early learning can
arise without direct selection on either trait, simply through the process of
domestication, but what is the significance of this result for the study of human
language? Can studying the evolution of learning and complexity in bird song
inform our study of the origins of complex language in our species? We believe
that understanding the mechanisms behind the emergence of the Bengalese
finch’s song, and indeed the evolution of bird song in general, is valuable for
evolutionary linguistics in two ways.

Firstly, it has been argued that iterated learning is a key mechanism for the
origins of syntax in human language (Kirby and Hurford, 2002). It is striking that
human language differs from most other communication systems both in being
transmitted through iterated learning and in having complex syntactic structure.
We say “most” here but not “all”. We appear to be in a very exclusive club with
songbirds possibly as another member. Of course, there are important differences
between iterated learning in humans and birds. For example, in the former a
central constraint on transmitted languages is that they be expressive, in that
strings must convey complex information. Bird song does not seem to carry
‘meaning’ in the same way, although a diversity of songs may play a role as a
sexual display (Catchpole and Slater, 1995). Nevertheless the co-occurrence of
iterated learning and signal complexity in both songbirds and humans combined
with the rarity of either anywhere else in nature cannot be ignored.

Secondly, and more specifically, by uncovering the crucial role of selective
masking in the case of the Bengalese Finch, we provide some support for
Deacon’s hypothesis and in doing so bring a new mechanism to the table for
discussions of the origins of human syntax (though see also the discussion in
Deacon (2003)). It is quite possible that we should not be looking for selective
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advantages of a culturally transmitted syntactic language, but rather asking what
selective forces may have been shielded in our recent evolutionary past. The
lifting of selection pressure, and the subsequent diversification of behaviour
could have been the necessary precursors of a system of iterated learning for
language. What remains to be understood is exactly what more is required for any
subsequent modification and synergistic reorganisation of the neural mechanisms
underlying these new behaviours.

We feel that computational modelling of the vocal behaviour of birds, humans
and perhaps of other vocal learning species, may provide valuable insights to
this question.
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