
Selection, domestication, and the emergence of learned

communication systems

Graham Ritchie!†

!Centre for Intelligent Systems and their Applications

University of Edinburgh

graham.ritchie@ed.ac.uk

Simon Kirby†

†Language Evolution and Computation Research Unit

University of Edinburgh

simon@ling.ed.ac.uk

Abstract

One of the most distinctive characteristics of human language is the extent to which it relies on learned

vocal signals. Communication systems are ubiquitous in the natural world but vocal learning is a

comparatively rare evolutionary development (Jarvis, 2004). In this paper we take one example of this

phenomena, bird song, which displays some remarkable parallels with human language (Doupe and

Kuhl, 1999), and we focus on one particular case study, that of the Bengalese finch (Lonchura striata

var. domestica), a domesticated species whose song behaviour differs strikingly from its feral ancestor

in that it has complex syntax and is heavily influenced by early learning (Okanoya, 2002). We present

a computational model of the evolutionary history of the Bengalese finch which demonstrates how an

increase in song complexity and increased influence from early learning could evolve spontaneously

as a result of domestication. We argue that this may provide an insight into how increased reliance on

vocal learning could evolve in other communication systems, including human language.

1 Introduction

The human capacity for language is one of our

most distinctive characteristics. While communica-

tion systems abound in the natural world, human lan-

guage distinguishes itself in terms of its communica-

tive power, flexibility and complexity. One of the

most unusual features of human language, when com-

pared to the communication systems of other species,

is the degree to which it involves learning. Just how

much of language is innate and how much is learned

is an ongoing controversy, but it is undeniable that

the specific details of any particular language must

be learned anew every generation. We do, of course,

bring a great deal of innate resources to bear on our

language learning process, and the results these in-

nate biases have on the development of languages

may explain a great deal about the structure of the

languages we see today. But still every child in every

new generation must go through a lengthy process

of language acquisition if they are to become normal

language users.

Once in place, this inter-generational process of

language acquisition and use, or iterated learning

(Kirby and Hurford, 2002), can give rise to cultural

evolution, which studies have shown may explain

many prominent phenomena of human language, in-

cluding the emergence of dialects and, by extension,

separate languages (Livingstone, 2002), regular and

irregular word forms (Kirby, 2001) and composi-

tional syntax (e.g. Brighton, 2002).

The emergence of learning can therefore be seen

as a major transition in the evolution of language and

we would like to better understand the evolutionary

pressures and factors which caused this transition. A

natural point at which to start such an investigation

is to look at the communication systems of other an-

imals to see if there are any parallels which might il-

luminate the relevant ecological factors. Much com-

parative research has been carried out with the non-

human primates, but despite some fascinating results,

it seems that their natural communication systems

are very different to language, including the fact that

learning plays a much less prominent role. In fact

it appears that vocal learning systems have evolved

in only three groups of mammals: humans, bats and

cetaceans, and three groups of birds: songbirds, hum-

mingbirds, and parrots (Jarvis, 2004).

In this paper we concentrate on bird song as it has

many striking parallels with language, particularly

the way in which it is learned, as Darwin noted in

The Descent of Man:

The sounds uttered by birds offer in several

respects the nearest analogy to language,

for all the members of the same species ut-
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ter the same instinctive cries expressive of

their emotions; and all the kinds that sing,

exert their power instinctively; but the ac-

tual song, and even the call notes, are learnt

from their parents or foster-parents. (Dar-

win, 1879, p. 108)

Since Darwin’s day much research has been car-

ried out into bird song and, to take Tinbergen’s four

perspectives of ethology, we now know a great deal

about its mechanism, development, function and evo-

lution. However, despite much research, in general

the evolutionary function of song learning remains

unclear (Slater, 2003). The parallels between bird

song and human language have also been further

elaborated as modern techniques have allowed us to

establish the neural mechanisms of both song and lan-

guage (Doupe and Kuhl, 1999).

2 A case study

Recent studies by Kazuo Okanoya of a domesticated

species of finch, the Bengalese finch (Lonchura stri-

ata var. domestica), and its feral ancestor, the white-

backed munia (Lonchura striata), provide an inter-

esting case study of the interaction of learning and

evolution in bird song. The Bengalese finch sings a

song with complex finite state syntax which is heav-

ily influenced by early auditory experience. Surpris-

ingly, the munia sings a strikingly simpler, more lin-

ear song which is less influenced by early learning.

In other words, in a relatively short period of domes-

tication, there have been radical changes in song be-

haviour. This has happened even though the domes-

ticated species has been artificially bred for plumage

rather than song.

Okanoya (2004) has identified the neural mecha-

nism underlying this difference in behaviour and has

shown that while Bengalese chicks are able to learn

the songs of munia tutors, munia chicks are not able

to learn the more complex Bengalese song, clearly

demonstrating that there is a physiological basis for

this difference.

2.1 Okanoya’s hypothesis

As experiments have shown that both female mu-

nias and female Bengalese finches prefer the more

complex song, Okanoya (2002) argues that it is sex-

ual selection which drove this increase in complex-

ity. He argues that domestication freed the Bengalese

finch from the pressure of predation and other pres-

sures associated with life in the wild which had pre-

viously held song complexity in check. According to

Okanoya, the more complex song of the Bengalese

finch may therefore be seen as an honest signal of fit-

ness (Zahavi, 1975); a fitter bird can afford a more

complex song. Sasahara and Ikegami (2004) show

with a computational model of the finch data that

song complexity could indeed increase as a result of

sexual selection.

2.2 Deacon’s hypothesis

Reviewing the same data, Deacon (p.c.) agrees that

domestication masked the natural selection pressure

keeping the munia’s song simple, but argues that the

increase in complexity happened without direct selec-

tion on the trait. Essentially, he posits that domestica-

tion shielded the trait from selection which allowed

random genetic drift to erode innate song biases in

the munia. This allows previously minor influences,

such as mnemonic biases and early auditory experi-

ence, to have more of an effect on song structure and

learning, which results in the various neural modules

involved in song production and learning becoming

increasingly de-differentiated. Deacon goes on to ar-

gue that this process of masking and subsequent de-

differentiation is a potential explanation for the evo-

lution of complex functional synergies such as the

neural mechanisms for song production now present

in the Bengalese finch, and, he argues, in the human

capacity for language. The concept of selective mask-

ing and its effect on the evolution of language are ex-

plored in more detail in (Deacon, 2003).

3 A computational model

In order to evaluate Deacon’s hypothesis and to try

to establish if such behaviour could evolve sponta-

neously as a result of domestication, we have devel-

oped a computational model of the finch data. The

model is designed to be reasonably biologically plau-

sible, and also general enough that it could be ex-

tended to other species. The model works with an

evolving population of agents, or birds, and the main

stages in the simulation are listed here, details of each

stage are given below:

Birth The bird’s song filter is built up from its

genotype as described in section 3.1.

Development The bird is exposed to e songs from
its environment, and, using its filter, selects t songs
from which it will learn (its training set) as described

in section 3.2. The bird then uses the learning algo-

rithm described in section 3.3 to learn the song gram-

mar it will use to sing throughout its life.



Adulthood The bird is tested in f fitness trials, as
described in section 3.4 to see how many times, using

its filter, is can correctly recognise a bird of its own

species and how many times it is correctly recognised

by a bird of its own species. These values are added

to give a bird’s fitness score.

Reproduction Parents of the same species are

selected probabilistically according to their fitness

score and their chromosomes are crossed over using

one-point crossover with probability pCO (set to 0.7

for all results provided here), to give a new child.

Individual genes are mutated with probability pMut
(set to 0.05 for all results provided here). The muta-

tion operator used is the ‘Reflect’ operator described

in (Bullock, 1999).

Death Each bird in the population is sampled s
times and the resulting songs are stored for the next

generation to learn from. All of the current birds in

the population are removed and their children become

the new population.

3.1 The song filter

A bird is modelled as having a genetically coded

note1 transition matrix, which specifies a transition

probability from each note to every other note in the

used in the simulation, including a probability for

the first and final notes. The total number of notes

is a parameter of the simulation, numNotes, but in
all results provided here this was set to 8, i.e. the

notes from a alphabetically through to h, this value
was chosen as it appears to be the number of unique

notes identifiable in both the Bengalese finch and mu-

nia’s songs (Okanoya, 2002, p. 56). The matrix is

coded for by a chromosome which has one real val-

ued locus for each entry in the matrix which can vary

between 0 and 1. This chromosome will thus have

(numNotes + 1)2 loci, the 1 is added to include the
transitions at the beginning and end of the song. To

construct a matrix from the chromosome we look at

each numNotes + 1 loci of the chromosome in turn,
and normalise the values to give a probability distri-

bution for each row of the matrix. An example ma-

trix, and the chromosome that codes for it is shown

in table 3.1. Note that this scheme allows different

genotypes to code for the same phenotype.

The transition matrix serves one main purpose; to

establish the probability that a given song is one of the

1It should be noted that while we use the term ‘note’ throughout

this paper, this is not intended to refer to a particular acoustic note,

rather we simply use it to denote an atomic song element that can

be reliably differentiated from other elements which appear in the

song.

a b c E

S 0.08 0.15 0.62 0.15

a 0.11 0.89 0.00 0.00

b 0.05 0.10 0.40 0.45

c 0.82 0.09 0.00 0.09

0.1 0.2 0.8 0.2 0.1 0.8 0.0 0.0 0.1 0.2 0.8 0.9 0.9 0.1 0.0 0.1

Table 1: An example note transition matrix and the

chromosome that codes for it. The S indicates the

start of the song, and the E indicates the end of the

song.

bird’s own species song. This is done by establishing

the average probability of each note transition in the

song, as shown in equation 1 which defines the pref-

erence a given matrixmx has for a particular song sy ,

in this equation n is the number of note transitions in
sy andmx(ti) is the entry inmx for the ith transition
of sy . For example the preference value the matrix in

table 3.1 gives for the song cab, which has the transi-
tions S-c, c-a, a-b and b-E, is 0.62+0.82+0.89+0.45

4 =

0.695, while the preference for the song acb is 0.043.
Note that we always include the transition to the first

note and from the last note, so the empty song ‘’ has

a single transition S-E, for which this matrix has a
preference value of 0.15.

preference(mx, sy) =
∑n

i=0 mx(ti)
n

(1)

The matrix can be thought of as a song ‘filter’. A

song with a high probability will be more likely to

pass though the filter than one with a lower probabil-

ity, in our example cab would be much more likely
to pass through the filter than acb. If the matrix has
a single high probability transition for each note this

can be thought of as a strong filter, as it will only

accept songs which contain these transitions. If the

matrix has even probabilities for each transition it is

considered a weak filter as it accepts all songs equally.

We can measure the strength of the filter ex-

plicitly by calculating the entropy for each transi-

tion distribution (i.e. each row in the matrix), us-

ing Shannon’s (1948) measure. This will result in a

value which ranges from 0 to log(nV alues), where
nV alues is the number of probabilities in row rx (i.e.

the number of columns in the matrix). We then nor-

malise this value into the range 0 to 1, as shown in in
equation 2, which defines the normalised entropy for

a given row rx, in this equation pi is the probability

of the ith transition in rx. The overall strength of a

matrix mx is then calculated as the average entropy



of each row r in the matrix, as shown in equation 3.
A filter strength of 0 means that the filter will only

accept one song while an strength of 1 means that the

filter will accept all songs equally. As an example,

the matrix in table 3.1 has a strength value of 0.56.

entropy(rx) =
−

∑nV alues
i=0 pi log (pi)
log(nV alues)

(2)

strength(mx) =
∑nRows

i=0 entropy(ri)
nRows

(3)

This filter is intended to model the preferences

many songbirds have for their species specific

song (Catchpole and Slater, 1995). In the model a

bird uses its filter for two purposes:

1. To select its training set (the songs it will later

use to learn from) from the songs it is exposed

to during infancy.

2. To judge whether another bird is a member of

the same species for mating or territorial de-

fense.

In this respect, this model is similar to those used

in Lachlan’s models of the ‘cultural trap’ in bird

song (Lachlan and Slater, 1999; Lachlan and Feld-

man, 2003). This seems a reasonably plausible as-

sumption, as it is known that some songbirds do have

an innate preference for conspecific song both when

learning songs as a nestling and also for later mate

selection (Catchpole and Slater, 1995).

3.2 Selecting the training set

The infant bird is exposed to e environmental songs
to select its t training songs from, both e and t are
parameters of the simulation, but were set to 50 and

5 respectively for all results provided here. 5 seems

a rather low value of t, but the learning algorithm is

very computationally intensive and so a low value is

used to speed up the simulation. The e environmen-
tal songs are randomly selected from the songs sam-

pled from the previous generation, to compose this

set each bird is sampled s times, another parame-
ter which is set to 5 here, so for a population size

popSize of 100, as used here, this will contain 500
songs.

The infant bird is exposed to each of the e songs
in turn and uses its filter to compute the probability it

will be accepted. During experimental runs it was de-

termined that checking that the song is accepted once

did not impose enough of a pressure for the bird to

correctly select conspecific song and so a song is only

added if it is accepted by the filter twice successively.

If the bird has not picked t songs after being exposed
to all e songs, the process is repeated until t songs
have been selected. The training songs are then fed

into the learning algorithm described below.

3.3 Song learning

Song learning is modelled as minimum description

length (MDL) induction of a probabilistic finite state

machine (PFSM), closely following the algorithm de-

scribed in (Teal and Taylor, 2000). Induction of

finite-state machines was chosen to model learning

as Okanoya (2002) argues that the songs of both mu-

nias and Bengalese finches can be usefully described

by a finite-state syntax. The algorithm works by

firstly establishing the maximal PFSM that explic-

itly represents each song in the training set, the prefix

tree. The algorithm then searches for nodes which

can be merged which will reduce the MDL of the

overall machine, whilst also ensuring that the PFSM

remains deterministic. The MDL measure takes into

account the amount of information (measured by the

number of bits) required to code for the machine it-

self, and also to code for each of the training songs

in terms of the machine. Essentially the algorithm

searches for the most parsimonious machine in terms

of the data. This approach allows us the bird to gen-

eralise from its training set, whilst also always being

able to reproduce each of the songs it learned from.

The reader is referred to (Teal and Taylor, 2000) for a

more detailed description of the algorithm used. The

only difference between Teal and Taylor’s and our ap-

proach is that we also take into account the probabil-

ity of each note transition, given the probabilities of

each transition in the training set.

3.4 Calculating a bird’s fitness

To establish a bird’s fitness we want to check both that

its filter allows it to correctly identify its own species,

and that its song is correctly identified by other birds

of its species. This seems a reasonable model of the

pressures acting on song in the wild (Catchpole and

Slater, 1995).

To calculate an individual bird b1’s fitness we per-

form f fitness trials, a parameter set to 250 for the
results provided here. In each fitness trail we get the

b1 to produce a song and we then randomly select

another member of the population, b2 and check that

b2 correctly recognises the song using its filter. We

also get b2 to produce a song and check that b1 cor-



rectly recognises the song with its filter. Every correct

recognition means that b1’s fitness is incremented by

1. With f set to 250, this means that the maximum
fitness achievable is 500, or generally 2f .

3.5 Modelling the finch data

This is a fairly general model of bird song, and so

we need set it up to match the data available on the

Bengalese finch and the munia as closely as possible.

The simulation passes through 3 main phases, each

of which runs for 500 generations. The phases are

described below.

Phase 1 We know that the white-backed munia

has a very stereotyped song and that it seems to only

be able to learn songs that match its species-specific

song fairly closely (a munia cross-fostered with Ben-

galese parents is not able to learn its tutor’s song).

In our model this corresponds to the munia having a

strong filter. To simulate this state we seed the envi-

ronmental songs with a single song type, e.g. abcdef .
We then run the simulation for 500 generations using

the fitness function and learning algorithm described

above. As the environment songs are entirely identi-

cal the songs that any bird will learn from are always

the same, and so they will always induce the same

PFSM. This is not meant to be biologically plausible,

we simply want the population to develop strong fil-

ters for a particular simple song type.

Phase 2 At the end of phase 1 we have a population

of birds who sing a stereotypical song and produce

offspring with a strong genetic bias to learn that song.

To test if the filter can indeed help young birds recog-

nise the appropriate song to learn from in the second

phase of the run we start introducing random songs

into the bird’s environment, this is intended to model

hetero-specific song in the environment. We model

this by replacing 10% of the s sampled songs with
randomly generated songs which use the same notes

as the current population and which are constrained

to within the same length as the munia songs.

Phase 3 We model domestication of the popula-

tion simply by ceasing to calculate fitness, but we

continue to perform the crossover and mutation op-

erations. The seems a reasonable model of domes-

tication, as in captivity the birds no longer have to

recognise their own species to successfully mate or

defend their territory as the mating is now controlled

by humans and they are kept in aviaries. Domestica-

tion can thus be seen to mask the selection pressure

on these functions. We continue to introduce 10% of

random songs into the environment each generation,

as it seems a reasonable asumption that the birds will

still be exposed to hetero-specific song, or at least

other extraneous sounds, in captivity. Experimental

results of this setup are described in the next section.

4 Results

The graph in figure 1 shows several measures taken

over the course of each of the three phases described

above.

The first measure, in red, is how much variation

there is, on average, in an individuals repertoire. This

is calculated simply as the total edit (or Levenshtein)

distance between a number of an individual’s songs

(set to 10 for all runs shown here). The second mea-

sure, in green, is the average filter strength of the pop-

ulation, calculated as described in equation 3. The

third measure, in blue, is the average fitness of the

population. We do not calculate this measure in phase

3 and so it does not appear for this phase. The fourth

measure we include, in blue, is the average grammar

encoding length (GEL) of the population’s PFSMs,

this is a measure of the size, in bits, it would take to

encode a PFSM using the measure defined in (Teal

and Taylor, 2000). The fifth measure, in brown, is

the average song linearity of the songs tested in mea-

sure 1, defined as the number of unique notes in each

song divided by the number of unique note to note

transitions. The sixth and final measure, in yellow,

is the average linearity of the population’s PFSMs

calculated simply as the number of states divided by

the number of transitions. A completely linear PFSM

would thus have a linearity of 1, while a maximally

non-linear PFSM would have a linearity equal to 1

over the number of transitions in the PFSM.

Two example PFSMs taken from the population at

the end of phase 2 are shown in figure 2, and two PF-

SMs from the end of phase 3 are shown figure 3. The

GEL and PFSM linearity values for each machine is

also given.

Figure 2: Two example PFSMs from the population at the

end of phase 2.

4.1 Analysis

These results demonstrate that the strong filters built

up in phase 1, as shown by the increase in filter
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Figure 3: Two example PFSMs from the population at the

end of phase 3.

strength2, enable the birds to filter out the hetero-

specific songs introduced in phase 2 without any

fitness decrease. We see that all 5 measures stay

roughly the same throughout this phase, indicating

that this is a fairly stable state. When we ‘domesti-

cate’ the population in phase 3 we see a significant

change in its behaviour. Immediately we see that the

filters begin to weaken, and we see that the GEL and

2Note that the strongest filter would give a value of 0, and the

weakest 1

the individual variation measures also rise steadily

throughout the phase indicating that the population’s

PFSMs are getting larger and the birds have a more

varied song repertoire. At the same time we see both

the song, and underlying PFSM linearity drop, indi-

cating that the songs a bird will sing have compara-

tively more varied note transitions.

This behaviour seems to be a result of the fact the

strength of the population’s filters is no longer being

selectively maintained, that it they have been masked

from selection. This allows mutations to accumu-

late and for the filters to become steadily weaker.

This allows some of the hetero-specific songs to pass

though the filter when a bird is selecting its training

set, which results in the bird inducing a more var-

ied PFSM. Essentially the domesticated populations

is able to learn from much more varied sources and

so early auditory experience has much more of an ef-

fect on adult song behaviour.

These results are comparable to those provided

in (Wiles et al., 2002), who show with a computa-

tional model how a similar masking effect, in this

case a fruit-rich environment rather than domestica-

tion, may have played a role in the loss of the ability

of anthropoid primates to synthesize vitamin C. Their



model, however, goes further than ours and shows

that if the selection pressure were later unmasked this

could result in selection for other abilities, e.g. colour

vision, that maintained the levels of vitamin C avail-

able.

4.2 Song complexity?

Okanoya (2002) argues that the Bengalese finch has a

much more “complex” song that the munia. His mea-

sure of complexity is the song linearity, defined as

the total number of unique song notes divided by the

number of unique note-to-note transitions. He finds

that the average song linearity of the munia is around

0.8 while the Bengalese finch song has a value of

around 0.4 (p. 56). We provide results for this mea-

sure over the course of our simulations in the graph

above, but on average we also see a higher value,

around 0.95, for the ancestral population and a lower

value, around 0.6, for the domesticated population.

While this measure seems a reasonably intuitive

measure of song complexity, it should be noted that

this measure will classify an entirely random song as

maximally complex. We do not want to equate ran-

domness with complexity, but we find it hard to define

a measure that can differentiate between the two. Any

standard measure of the information content of a song

will not be able to do so; a random song is maximally

informative in information-theoretic terms. However

we consider that two measures, the GEL of a bird’s

PFSM taken together with the linearity of the PFSM

provide a reasonable estimate of the complexity of

a song. A PFSM with a very small GEL and a low

linearity is likely to produce more random songs, as

it approaches a one state PFSM with multiple transi-

tions back to the same state. A PFSM with a large

GEL, but a very high linearity (as we see in the an-

cestral population in the model) will produce an en-

tirely linear song. A PFSM with a large GEL and

a relatively low linearity will produce songs that we

are more happy to refer to as complex, as the GEL

indicates that it has many states, and so different

notes will be used in different contexts, but each state

also has several transitions which means that differ-

ent transitions can be made from each context. Our

results demonstrate that the domesticated population

does have a higher GEL and a lower PFSM linear-

ity than the wild population and so we are tentatively

happy to agree that domestication has caused an in-

crease in song complexity. However, we are still

working on developing a more satisfactory measure

of song complexity.

4.3 Comparison with the biological data

Comparing these results with the data available for

the Bengalese finch we find that the model does seem

to capture some of the phenomena involved. Okanoya

has shown that a munia chick which is not exposed to

conspecific song will not sing a normal song, which

seems to fit with the model. He has also shown

that while Bengalese chicks can readily learn munia

songs, munia chicks cannot learn the more complex

Bengalese songs. In the model this difference is at-

tributable to their different filters. The difference in

the values for the song linearity in the ancestral and

domesticated populations also seem to match fairly

well.

As it stands though, the model does not explain

why the female munia prefers the Bengalese song.

We would argue that a bias for complexity song may

have been latent in the munia, and the fact that the

munia females prefer the more complex song does not

prove that this was the driving force for the change in

song behaviour, although introducing such a prefer-

ence into the model may help to tease these pressures

apart. Okanoya (2004) demonstrates that the NIf re-

gion of the Bengalese finch’s brain is necessary for

the it to be able to sing the more complex song; when

surgically lesioned a Bengalese finch with previously

complex song will sing a simpler, more munia-like

song. We would argue that the model remains neu-

tral to this datum, as it is possible that the munia does

have this pathway present in its brain but, because it

only ever learns a simpler song, does not use it.

5 Discussion

Our results demonstrate that an increase in song com-

plexity (in some sense) and increased influence from

early learning can arise without direct selection on ei-

ther trait, simply through the process of domestica-

tion, but what is the significance of this result for the

study of human language? Can studying the evolu-

tion of learning and complexity in bird song inform

our study of the origins of complex language in our

species? We believe that understanding the mecha-

nisms behind the emergence of the Bengalese finch’s

song, and indeed the evolution of bird song in gen-

eral, is valuable for evolutionary linguistics in two

ways.

Firstly, it has been argued that iterated learning is

a key mechanism for the origins of syntax in human

language (Kirby and Hurford, 2002). It is striking

that human language differs from most other commu-

nication systems both in being transmitted through

iterated learning and in having complex syntactic



structure. We say “most” here but not “all”. We ap-

pear to be in a very exclusive club with songbirds

as another member. Of course, there are important

differences between iterated learning in humans and

birds. For example, in the former a central constraint

on transmitted languages is that they be expressive,

in that strings must convey complex meanings. Bird

song does not carry meaning in the same way, al-

though a diversity of songs may play a role as a sex-

ual display (Catchpole and Slater, 1995). Neverthe-

less the co-occurrence of iterated learning and signal

complexity in both songbirds and humans combined

with the rarity of either anywhere else in nature can-

not be ignored.

Secondly, and more specifically, by uncovering the

crucial role of selective masking in the case of the

Bengalese Finch, we bring a new mechanism to the

table for discussions of the origins of human syn-

tax. It is quite possible that we should not be look-

ing for selective advantages of a culturally transmit-

ted syntactic language, but rather asking what se-

lective forces may have been shielded in our recent

evolutionary past. The lifting of selection pressure,

and the subsequent diversification of behaviour could

have been the necessary precursors of a system of

iterated learning for language. What remains to be

understood is exactly what more is required for any

subsequent modification and synergistic reorganisa-

tion of the neural mechanisms underlying these new

behaviours.

We feel that the answer to this question is best pur-

sued through computational modelling of the vocal

behaviour of both birds and humans.
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