
Learning biases and language evolution

Kenny Smith∗

Language Evolution and Computation Research Unit,
School of Philosophy, Psychology and Language Sciences,

The University of Edinburgh,
Adam Ferguson Building, 40 George Square, Edinburgh EH8 9LL

http://www.ling.ed.ac.uk/∼kenny

Abstract

Structural hallmarks of language can be explained in terms of adaptation, by language, to
pressures arising during its cultural transmission. Here I present a model which explains the com-
positional structure of language as an adaptation in response to pressures arising from the poverty
of the stimulus available to language learners and the biases of language learners themselves.

1 Introduction

The goal of evolutionary linguistics is to explain the origins and development of human language —
how did language come to be structured as it is? Recent research attempts to answer this question
by appealing to cultural evolution (Batali 2002; Brighton 2002; Kirby 2002). Language is culturally
transmitted to the extent that language learners acquire their linguistic competence on the basis of
the observed linguistic behaviour of others. A key contribution of those working within the cultural
framework is to show that the cultural transmission of language leads to an adaptive dynamic —
the adaptation, by language itself, to pressures acting during its cultural transmission. This cultural
evolution can lead to the emergence of at least some of the characteristic structure of language.

This process of cultural evolution must be dependent on some biological endowment. What is not
clear is what form this endowment takes, or to what extent it is language-specific. In this paper I will
present a series of experiments, using a computational model of the cultural transmission of language,
which allow us to refine our understanding of the necessary biological basis for a particular structural
characteristic of language, compositionality. In this model a learner’s biological endowment consists
of a particular way of learning, with an associated learning bias.

2 Elements of the model

I will present an Iterated Learning Model (ILM) which allows us to investigate the role of stimulus
poverty and learning bias in the evolution of compositional language. The ILM is based around a
simple treatment of languages as a mapping between meanings and signals (see Section 2.1). Lin-
guistic agents are modelled using associative networks (see Section 2.2). These agents are slotted
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into a minimal population model to yield the ILM. For the purposes of this paper, we will consider
an ILM with the simplest possible population dynamic — the population consists of a set of discrete
generations, with each generation consisting of a single agent. The agent at generationn produces
some observable behaviour (in this model a set of meaning-signal pairs), which is then learned from
by the agent at generationn + 1.

2.1 Compositionality and a model of languages

Compositionality relates semantic structure to signal structure — in a compositional system the mean-
ing of an utterance is dependent on the meaning of its parts. For example, the utterance “John walked”
consists of two words, a noun (“John”) and a verb (“walked”), which further consists of a stem (“walk-
”) and a suffix (”-ed”). The meaning of the utterance as a whole is dependent on the meaning of these
individual parts. In contrast, in a non-compositional orholisticsystem the signal as a whole stands for
the meaning as a whole. For example, the meaning of the English idiom “bought the farm” (meaning
died) is not a function of the meaning of its parts.

The simplest way to capture this is to treat a language as a mapping between a space of meanings
and a space of signals. In a compositional language, this mapping will be neighbourhood-preserving.
Neighbouring meanings will share structure, and this shared structure will result in shared signal
structure — neighbouring meanings in the meaning space will map to neighbouring signals in signal
space. Holistic mappings are not neighbourhood-preserving — since the signal associated with a
meaning does not depend on the structure of that meaning, shared structure in meaning space will not
map to shared signal structure, unless by chance.

For the purposes of this model, meanings are treated as vectors and signals are strings of char-
acters. Meanings are vectors in someF -dimensional space, where each dimension takesV possible
values.F andV therefore define a meaning spaceM.1 The world, which provides communicatively
relevant situations for agents in the model, consists of a set of objects, where each object is labelled
with a meaning drawn from the meaning spaceM.2 Signals are strings of characters of length 1 to
lmax, where characters are drawn from the character alphabetΣ.3 lmax andΣ therefore define a signal
spaceS.

Given these representations of meanings and signals, we can now define a measure of composi-
tionality. This measure is designed to capture the notion given above, that compositional languages
are neighbourhood-preserving mappings between meanings and signals, and is based on a measure
introduced in Brighton (2000). Compositionality (c) is based on the meaning-signal pairs that an
agent produces, and is the Pearson’s Product-Moment correlation coefficient of the pairwise distances
between all the meanings and the pairwise distances between their corresponding signals.4 c = 1 for
a perfectly compositional system andc ≈ 0 for a holistic system.

1The structure of this meaning space has been shown to have consequences for the cultural evolution of compositional
structure (Brighton 2002). However, I will not vary this parameter. All results reported here are for the case whereF = 3
andV = 5.

2All results presented here are for the case where the world contains 31 objects, each object is labelled with a distinct
meaning, and those meanings are drawn from a hypercube subspace of the space of possible meanings — astructuredworld,
in the terms of Smithet al. (forthcoming).

3For the results reported here,lmax = 3 andΣ = {a, b, c, d, e, f, g, h, i, j}.
4Distance in the meaning space is measured using Hamming distance. Distance in the signal space is measured using

Levenstein (string edit) distance.



2.2 A model of a linguistic agent

We now require a model of a linguistic agent capable of manipulating such systems of meaning-signal
mappings. I will describe an associative network model of a linguistic agent. This model is based upon
a simpler model of a linguistic agent, used to investigate the cultural evolution of vocabulary systems
(Smith 2002a). The main advantage of this model is that it allows the biases of language learners to
be manipulated and investigated. For full details of the network model, the reader is referred to Smith
(2003), Chapter 5.5

Representation Agents are modelled using networks consisting of two sets of nodesNM andNS

and a set of bidirectional connectionsW connecting every node inNM with every node inNS . Nodes
inNM represent meanings and partial specifications of meanings, while nodes inNS represent partial
and complete specifications of signals.

As summarised above, each meaning is a vector inF -dimensional space where each dimension
hasV values. Componentsof a given meaning are (possibly partially specified) vectors, with each
feature of the component either having the same value as the meaning, or a wildcard. Similarly,
components of a signal of lengthl are (possibly partially specified) strings of lengthl. Each node in
NM represents a component of a meaning, and there is a single node inNM for each component of
every possible meaning. Similarly, each node inNS represents a component of a signal and there is a
single node inNS for each component of every possible signal.

Learning During a learning event, a learner observes a meaning-signal pair〈m, s〉. The activations
of the nodes corresponding to all possible components ofm and all possible components ofs are set
to 1. The activations of all other nodes are set to 0. The weights of the connections inW are adjusted
according to some weight-update rule. In Section 4 this weight-update procedure will be a parameter
of variation. However, initially, we will consider the rule

∆Wxy =


+1 if ax = ay = 1
−1 if ax 6= ay

0 if ax = ay = 0
(1)

whereWxy ∈ W gives the weight of the connection between nodesx andy andax gives the activation
of nodex. The learning procedure is illustrated in Fig. 1 (a).

Production During the process of producing utterances, agents are prompted with a meaning and
required to produce a meaning-signal pair. Production proceeds via a winner-take-all process. An
analysisof a meaning or signal is an ordered set of components which fully specifies that meaning or
signal. In order to produce a signal for a given meaningmi ∈ M, every possible signalsj ∈ S is
evaluated with respect tomi. For each of these possible meaning-signal pairs〈mi, sj〉, every possible
analysis ofmi is evaluated with respect to every possible analysis ofsj . The evaluation of a meaning
analysis-signal analysis pair depends on the weighted sum of the connections between the relevant
nodes. The meaning-signal pair which yields the analysis pair with the highest weighted sum is
returned as the network’s production for the given meaning. The production process is illustrated in
Fig. 1 (b).

5Available for download at http://www.ling.ed.ac.uk/∼kenny/thesis.html
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Figure 1: (a) Learning the meaning-signal pair〈(2 1) , ab〉. Nodes are represented by large circles and are
labelled with the component they represent. For example,M(2 ∗) is the node which represents the meaning
component(2 ∗), where∗ is an unspecified feature value. Nodes with an activation of 1 are represented by large
filled circles. Small filled circles represent weighted connections. During the learning process, nodes represent-
ing components of(2 1) andab have their activations set to 1. Connection weights are then either incremented
(+), decremented (−) or left unchanged. (b) Retrieval of three possible analyses of〈(2 1) , ab〉. The relevant
connection weights are highlighted in grey. The weight for the one-component analysis〈{(2 1)} , {ab}〉 de-
pends on the weight of the connection between the nodes representing the components(2 1) andab, marked as
i. The weight for the two-component analysis〈{(2 ∗) , (∗ 1)} , {a∗, ∗b}〉 depends on the weighted sum of two
connections, marked as ii. The weight of the alternative two-component analysis〈{(2 ∗) , (∗ 1)} , {∗b, a∗}〉 is
given by the weighted sum of the two connections marked iii.

3 A familiar result

I will begin by replicating a familiar result: the emergence of compositional structure through cultural
processes depends on the presence of atransmission bottleneck(Brighton 2002; Kirby 2002). Recall
that a learner in the model acquires their linguistic competence on the basis of a set of observed
meaning-signal pairs. That set of meaning-signal pairs is drawn from the linguistic behaviour of some
other individual, which is a consequence of that individual’s linguistic competence. I will investigate
two possible conditions. In theno transmission bottleneckcondition, this set of observed meaning-
signal pairs contains examples of the signal associated with every possible meaning, and each learner
is therefore presented with the complete language of the agent at the previous generation. In the
transmission bottleneckcondition, the set of observed behaviour does not contain examples of the
signal associated with every meaning, therefore each learner is presented with a subset of the language
of the agent at the previous generation.6 The transmission bottleneck constitutes one aspect of the
poverty of the stimulus problem faced by language learners — they must acquire knowledge of a large
(or infinite, in the real-world case) language on the basis of exposure to a subset of that language.

In both conditions, the initial agents in each simulation run have all their connections weights
set to 0, and therefore produce every meaning-signal pair with equal probability. Subsequent agents
have connection weights of 0 prior to learning. Runs were allowed to progress for a fixed number
of generations (200).7 Figs. 2 (a) and (b) plot compositionality by frequency for the initial and final

6For all simulations involving a transmission bottleneck described in this paper, the number of utterances produced by
agents was set so that language learners observed approximately 60% of the language of the previous agent.

7In the no bottleneck condition, the system of meaning-signal mappings is stable long before this point, in the sense that
agents at generationn andn+1 produce identical sets of meaning-signal pairs. Absolute stability is impossible when there
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Figure 2:The impact of the transmission bottleneck. (a) gives frequency by compositionality for runs in the no
bottleneck condition — both the initial and final systems are holistic. (b) gives frequency by compositionality
for runs where there is a bottleneck on transmission — while the initial systems are again holistic, the final
systems are all highly compositional.

languages, for the no bottleneck and bottleneck conditions respectively.8

As can be seen from the figure, when there is no bottleneck on transmission there is no cultural
evolution and compositional languages do not emerge. In contrast, when there is a bottleneck on
transmission highly compositional systems emerge with high frequency — cultural evolution leads to
the emergence of compositional language from initially holistic systems. This confirms, using a rather
different model of a language learner, previously established results (Brighton 2002; Kirby 2002).

In the absence of a transmission bottleneck, the initial, random assignment of signals to meanings
can simply be memorised. Consequently, there is no pressure for compositionality and the holistic
mapping embodied in the initial system persists. However, holistic systems cannot survive in the
presence of a bottleneck. The meaning-signal pairs of a holistic language have to be observed to be
reproduced. If a learner only observes a subset of the holistic language of the previous generation
then certain meaning-signal pairs will not be preserved — the learner, when called upon to produce,
will produce some other signal for that meaning, resulting in a change in the language. In contrast,
compositional languages are generalisable, due to their structure, and remain relatively stable even
when the learner observes a subset of the language of the previous generation. Over time, language
adapts to this pressure to be generalisable. Eventually, the language becomes highly compositional,
highly generalisable and consequently highly stable.

4 Exploring learning biases

To what extent is this fundamental result, that the transmission bottleneck leads to a pressure for
compositional language, dependent on the model of a language learner? There is indirect evidence
that this result is to some extent independent of the model of a language learner — a wide range of
learning models all produce this fundamental result (Hurford 2000; Batali 2002; Kirby 2002; Kirby

is a bottleneck on cultural transmission — depending on the sample of observations each learner receives, an apparently
stable system can change at any time. However, thedistributionof systems is stable after 200 generations — allowing the
simulation runs to proceed for longer gives the same result.

8The results for the no bottleneck condition are based on 1000 independent runs of the ILM. The results for the bottleneck
condition are based on 100 runs — fewer runs are required as there is less sensitivity to initial conditions.



& Hurford 2002). However, do these models share a common element? Is there somelearner bias
common across all these models which is required for compositional language to evolve culturally?

In order to investigate this question, further experiments were carried out, in which the parame-
ter of interest is the weight-update rule used to adjust network connection weights during learning.
Different ways of adjusting connection weights will potentially lead to different learning biases —
different ways of changing weights will make certain systems easier or harder to learn than others.
The general form of the weight-update rule is as follows:

∆Wxy =


α if ax = ay = 1
β if ax = 1 ∧ ay = 0
γ if ax = 0 ∧ ay = 1
δ if ax = ay = 0

(2)

For the results described in the previous Section,α = 1, β = γ = −1, δ = 0. I will now consider
a wider range of weight-update rules, restricting myself to rules whereα, β, γ, δ ∈ {−1, 0, 1}. This
yields a set of34 = 81 possible weight-update rules. In order to ascertain the biases of the different
weight-update rules, each weight-update rule is subjected to three tests:9

Acquisition test: Can an isolated agent using the weight-update rule acquire a perfectly composi-
tional language, based on full exposure to that language? To evaluate this, an agent using the weight-
update rule was trained on a predefined perfectly compositional (c = 1) language, being exposed once
to every meaning-signal pair included in that language. The agent was judged to have successfully
acquired that language if it could reproduce the meaning-signal pairs of the language in production
and reception.

Maintenance test: Can a population of agents using the weight-update rule maintain a perfectly
compositional language over time in an ILM, when there is a bottleneck on transmission? To evaluate
this, 10 runs of the ILM were carried out for the weight-update rule, with the agent in the initial gener-
ation having their initial connection weights set so as to produce a perfectly compositional language.
Populations were defined as having maintained a compositional system ifc remained above 0.95 for
every generation of ten 200 generation runs.

Construction test: Can a population of agents using the weight-update rule construct a highly com-
positional language from an initially random language, when there is a bottleneck on transmission (as
happened in the results outlined in the previous Section)? To evaluate this, 10 runs of the ILM were
carried out for the weight-update rule, with the agent in the initial generation having initial connection
weights of 0 and therefore producing a random set of meaning-signal pairs. Populations were defined
as having constructed a compositional system ifc rose above 0.95 in each of ten 200 generation runs.

The results of these sets of experiments are summarised in Table 1. Only a limited number of
weight-update rules (two of 81) support the evolution of compositional language through cultural
processes. Why? What is it about the assignment of values to the variablesα, β, γ andδ in these rules
that make them capable of acquiring, maintaining and constructing a compositional system?

A full analysis is somewhat involved, and I will simply summarise the key point here — for full
details the reader is referred to Smith (2003). The two weight-update rules which pass the acquisition,

9A similar technique has been applied to the investigation of learning biases required for the cultural evolution of func-
tional vocabulary systems (Smith 2002a).



Test result
Acquire? Maintain? Construct?

Number of rules

no no no 63
yes no no 16
yes yes yes 2

Table 1:Summary of the results of the three tests. The table gives the three types of performance exhibited,
and the number (out of 81) of weight-update rules fitting that pattern of performance.

maintenance and construction tests satisfy three conditions: 1)α > β; 2) δ > γ; 3) α > δ. These
two rules10 are the only weight-update rules from the sample of 81 which satisfy these conditions. By
returning to the network and examining the way in which connection weights change on the basis of
exposure to individual meaning-signal pairs, we can identify the consequences of these restrictions.

1. α > β ensures that, if an agent is exposed to the meaning-signal pair〈mi, sj〉, they will in
future tend to prefer producesj when presented withmi, rather thansk 6=j .

2. δ > γ ensures that, if an agent is exposed to〈mi, sj〉, they will prefernot to producesj when
presented withmk 6=i.

3. α > δ ensures that, if an agent is exposed to〈mi, sj〉, they will tend to reproduce this meaning-
signal pair in a manner which involves the maximum number of components.

Points 1 and 2 in combination lead to a preference forone-to-onemappings between meanings and
signals — agents with the appropriate weight-update rules are biased in favour of learning languages
which map each meaning to a constant signal (one-to-many mappings are avoided, see Point 1), and
which map each distinct meaning onto a distinct signal (many-to-one mappings from meanings to
signals are avoided, see Point 2). Point 3 corresponds to a bias in favour of memorising associations
between elements of meaning and elements of signal, rather than between whole meanings and whole
signals. This tendency to exploit regularities is presumably a general property of learning devices
which are capable of generalising beyond their training data.

5 The learning bias elsewhere

How important are these two elements of bias? They are evident in all other models of the cultural
evolution of linguistic structure, as a consequence of a learner preference for extracting meaningful,
recurring chunks from the utterances they observe, coupled with production and learning constraints,
as summarised in Table 2. This suggests that the two components of bias (a bias in favour of one-
to-one mappings between meanings and signals, and a bias in favour of exploiting regularities in the
meaning-signal mapping) are a prerequisite for the cultural evolution of compositional structure.

This then constitutes a testable hypothesis: if we believe that compositional language evolved in
humans through cultural processes, we should expect that human language learners bring these two
biases to the language acquisition task. I assume that the ability to extract regularities, and thus learn

10To be explicit, the two rules are:
α = 1, β = −1, γ = −1, δ = 0

and α = 1, β = 0, γ = −1, δ = 0.



Paper Learning model
Structure
emerges?

Against synonymy? Against homonymy?

Hare & Elman (1995)
NN

(m→s)
no

yes
(architecture)

no
(architecture)

Batali (1998) yes
yes

(deterministic
production)

yes
(architecture)

Kirby & Hurford (2002)

NN
(s→m)

yes
yes

(deterministic
production)

yes
(architecture)

Hurford (2000) yes
yes

(deterministic
production)

?
(but homonymy

unlikely)

Kirby (2002)

rule
induction

yes
yes

(deterministic
production)

yes
(no learning of

homonyms)

Batali (2002) exemplar
induction

yes

yes
(cost reduction

for reused
expressions)

yes
(cost increase

for homonyms)

Table 2:Summary of the biases in models of the cultural evolution of linguistic structure, organised by learner
model (NN = neural network, m→s = mapping from meanings to signals, s→m = mapping from signals
to meanings). All models which lead to the emergence of structure build in biases against synonymy and
homonymy, either during learning or production. See Smith (2002) for an explanation of the biases of different
network architectures.

mappings from parts of meanings to parts of signals, is present in humans, and probably other species
besides. Additionally, there is evidence that human language learners bring a one-to-one bias to the
language acquisition task, at all levels of linguistic structure.

It has been proposed that, as a general principle, human language learners have a preference for
one-to-one mappings between underlying meaning and surface form. This has been termed variously
as amaxim of clarity(Slobin 1977), a preference fortransparency(Langacker 1977), or a bias in
favour of isomorphism(Haiman 1980). Table 3 summarises some of the relevant literature on the
biases which human language learners bring to the acquisition of morphological, lexical and syntactic
systems. As can be seen from this table, various authors have proposed that children bring biases
against one-to-many and many-to-one mappings to the acquisition of all levels of linguistic struc-
ture — human language learners appear to possess a bias in favour of one-to-one mappings between
meanings and surface forms.



Study
Level

Paper Method Conclusion

Mańczak (1980)
etymological
dictionary
survey

Bias against synonymy: paradigms
lose synonymous morphemes.

m
or

ph
ol

og
ic

al

Slobin (1977) observation

Bias against homonymy: widespread
homonymy contributes to difficulty of
acquiring inflectional system in Serbo-
Croat.

Markman & Wachtel (1988) experimental
Bias against synonymy: each object
will have only one label.

le
xi

ca
l

Macnamara (1982) observation
Bias against homonymy: children
avoid cross-categorial homonyms.

Pinker (1984) theoretical
Bias against synonymy: each deep
structure maps to a single surface struc-
ture.

sy
nt

ac
tic

Bever & Langendoen (1971) theoretical/
historical

Bias against homonymy: change in OE
relative clause structure due to avoid-
ance of ambiguous constructions.

Table 3: Summary of the literature on biases of human language learners, organised according to level of
linguistic representation.

6 Conclusions

I have presented an Iterated Learning Model of the cultural evolution of compositional structure. This
model has been used to replicate a familiar result — the poverty of the stimulus available to language
learners (as imposed by the transmission bottleneck) leads to the emergence of compositional struc-
ture. However, novelly, this cultural evolution has been shown to be dependent on language learners
possessing two biases:

1. a bias in favour of one-to-one mappings between meanings and signals.

2. a bias in favour of exploiting regularities in the input data, by acquiring associations between
parts of meanings and parts of signals.

Both these biases are present in most computational models of the evolution of linguistic structure.
Significantly, there is also evidence to suggest that human language learners bring these biases to
the language acquisition task. Compositionality, a fundamental structural property of language, can
therefore be explained in terms of cultural evolution in response to two pressures — a pressure arising
from the poverty of the stimulus, and a pressure arising from the biases of language learners. The
source of this learning bias in humans is a topic for further research — is the bias a consequence of
some general cognitive strategy, or a specific biological adaptation for the acquisition of language?
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