Language, Culture and Biology: does language evolve to be passed on by us, and did humans evolve to let that happen?

Simon Kirby

Language Evolution & Computation Research Unit Linguistics & English Language, PPLS University of Edinburgh www.ling.ed.ac.uk/~simon

• It's unique.

- It's unique.
- It's a complex dynamical system on three timescales:
 - I. individual learning
 - 2. social coordination/cultural transmission
 - 3. biological evolution

- It's unique.
- It's a complex dynamical system on three timescales:
 - I. individual learning
 - 2. social coordination/cultural transmission
 - 3. biological evolution
- But does this matter?
 - Do we need to take this into account to explain why language is the way it is?

- One answer (e.g. Pinker & Bloom 1990):
 - explaining language structure means thinking about biological evolution of constraints on learning

- One answer (e.g. Pinker & Bloom 1990):
 - explaining language structure means thinking about biological evolution of constraints on learning
- Genetically determined Language Faculty shapes what languages we can learn, and this has fitness impact

- One answer (e.g. Pinker & Bloom 1990):
 - explaining language structure means thinking about biological evolution of constraints on learning
- Genetically determined Language Faculty shapes what languages we can learn, and this has fitness impact
- To explain **adaptive** structure in language, look to natural selection of learning constraints

 Human nature determines human behaviour, i.e. innate learning mechanism determines language structure

 Biological evolution explains adaptive behaviour, i.e. communicatively functional language

• Where does socio/cultural stuff fit in?

- Where does socio/cultural stuff fit in?
- Language does not spring directly from our language faculty!

- Where does socio/cultural stuff fit in?
- Language does not spring directly from our language faculty!
 - It is inherited and constantly shaped by our membership of a speech community

- Where does socio/cultural stuff fit in?
- Language does not spring directly from our language faculty!
 - It is inherited and constantly shaped by our membership of a speech community
- Dual inheritance:
 - biological inheritance of language faculty, cultural inheritance of languages

Dual Transmission

How this fits in with our previous picture

 Our genes affect our learning biases/constraints, which somehow influence the socio/cultural process to give us the structural properties of language, which go on to affect our fitness

How this fits in with our previous picture

 Our genes affect our learning biases/constraints, which somehow influence the socio/cultural process to give us the structural properties of language, which go on to affect our fitness

Does this matter? Can't we just ignore this difficult stuff?

- Can simply ignore cultural transmission when making evolutionary arguments?
 - Does it add anything substantial?

Does this matter? Can't we just ignore this difficult stuff?

- Can simply ignore cultural transmission when making evolutionary arguments?
 - Does it add anything substantial?
- Research programme initiated by Hurford in the early 90s to try and answer this

Methodology: how to study the influence of cultural transmission

- Intuitions about interacting dynamical systems are poor
 - *Models* allow us to study the mechanisms in an idealised setting.
 - Apply understanding gained to real systems later.

Methodology: how to study the influence of cultural transmission

- Three broad types of models:
 - Computational/robotic

Castello; Damper; de Beule; Bleys; Briscoe; Dowman; Gasser; Gong; Hawkey; Hoefler; **Hurford**; Kirby; Lakkaraju; Laskowski; Mehler; Schulz; A. Smith; K. Smith; **Steels**; Swarrup; Uno; Wang; Wellens; Worgan; Yamauchi; Zuidema...

• Mathematical

Baronchelli; Dowman; Griffiths; Kalish; Kirby; Nakamura; K. Smith...

• Experimental

Beqa; **Cornish**; Dowman; Feher; Flaherty; Kirby; Roberts; Scott-Phillips; A. Smith; K. Smith; Tamariz...

I. Explicitly model individuals (population-level behaviour must be *emergent*)

- I. Explicitly model individuals (population-level behaviour must be *emergent*)
- 2. Individuals *learn* by observing instances of behaviour

- I. Explicitly model individuals (population-level behaviour must be *emergent*)
- 2. Individuals *learn* by observing instances of behaviour
- 3. Individuals also *produce* behaviour that is the input to others' learning

• Models vary in a number of ways:

- Models vary in a number of ways:
 - How is learning modelled? e.g., is it the same for all individuals, or does it evolve biologically? How domain-specific is it? How constrained?

- Models vary in a number of ways:
 - How is learning modelled? e.g., is it the same for all individuals, or does it evolve biologically? How domain-specific is it? How constrained?
 - What is being learned? e.g., Learning to produce signals for meanings with varying degrees of explicitness about what those meanings are; learning to solve a task that requires communication.

- Models vary in a number of ways:
 - How is learning modelled? e.g., is it the same for all individuals, or does it evolve biologically? How domain-specific is it? How constrained?
 - What is being learned? e.g., Learning to produce signals for meanings with varying degrees of explicitness about what those meanings are; learning to solve a task that requires communication.
 - What is the population structure? e.g., size; population turnover; spatial structure; social networks; horizontal vs. vertical transmission.

What have we learned from this modelling work?

What have we learned from this modelling work?

- Socio/cultural transmission is an *adaptive system*
 - Language can exhibit appearance of design *without* either natural selection or intentional design
 - It is adapting to ensure it's own survival

What have we learned from this modelling work?

- Socio/cultural transmission is an *adaptive system*
 - Language can exhibit appearance of design *without* either natural selection or intentional design
 - It is adapting to ensure it's *own* survival
- Clear imperative on culturally transmitted language (Deacon, Christiansen):
 - To be transmitted with fidelity it must be learnable despite constraints placed on that transmission
 - Languages adapt to the nature of the transmission bottleneck

• Languages are strikingly non-random

- Languages are strikingly non-random
 - The have a partially predictable relationship between meanings and signals
 - If we know some meaning-signal pairs, we can accurately predict others

- Languages are strikingly non-random
 - The have a partially predictable relationship between meanings and signals
 - If we know some meaning-signal pairs, we can accurately predict others
 - No other species can do this (without coding the lot innately).
- Languages are strikingly non-random
 - The have a partially predictable relationship between meanings and signals
 - If we know some meaning-signal pairs, we can accurately predict others
 - No other species can do this (without coding the lot innately).
- This is a cultural rather than biological adaptation

- Computational models (esp. Brighton):
 - Structure emerges from trade-off between learnability and expressivity in presence of bottleneck

422/t +O-422/a 422/b 422/e 422/k 234/a 442/r +O 442/l +O 442/r +O 442/r 442/m 442/b +0-413/ 413/0 + 0 413/0 + 0 413/0 + 0 413/1 + 0 413/g + 0 413/b + 0 413/d + 0 413/d +0-431/g +0-431/h 412/9 431/0 431/0 414/c 413/1 214/c +O 214/k +O 214/d +0 211/1 0 211/h 211/h 434/p 434/r ???/b 314/m 113/k 314/a -0 314/ +O 341/b +O 341/b +O 341/k +O 341/m 113/ 341/k 341/g +∩ 341/p 341/d 131/b 341) 341/o 131/j +0-211/g •O 442/k 223/a + 0 223/e 223/) +O 223/s -0-314/g 121/ 121/t 121/k -0--0 143/b 314/0 + () 314/b 314/c 314/j + 314/s - 314/m

10

?4?/q

??1/b

142/r

344/e

.____143/e

_____242/r

144/r

?4?/e

??1/r

???/p

Ò

???/r

2??/e

???/k

?4?/k

14?/k

242/k

?4?/k

??1/k

???/k

434/p

2??/p

223/k

424/6

331/a

442/k 442/r

?4?/h

?4?/h ?4?/g

-0

333/h 0-

123/h

342/g -0

244/g

??1/h

?11/g

331/g

412/h

131/h

1??/g 214/h

434/h

233/g

?2?/g

433/g

(333/h

?2?/h) 123/g

342/h

222/

?1?/h

331/k

122/h

?2?/h

433/h

?2?/h

+<u></u>-<u>?3?/h</u>

?4?/

342/j_

24?/

321/

214/j - 214/h

331/b 0-0-1

<u>→ ?2?/|</u>

423/1

433/j

224/1

123/j

211/h - 211/j - 419#

?4?/k

?1?/h

134/h

?3?/b

433/k 237/

?2?/k)

?2?/k

?4?/k

?3?/i

?2?/g

?1?/]_O

- Computational models (esp. Brighton):
 - Structure emerges from trade-off between learnability and expressivity in presence of bottleneck

- Computational models (esp. Brighton):
 - Structure emerges from trade-off between learnability and expressivity in presence of bottleneck
- Math models (Kirby, Dowman Griffiths):
 - This happens even without strong innate biases

- Computational models (esp. Brighton):
 - Structure emerges from trade-off between learnability and expressivity in presence of bottleneck
- Math models (Kirby, Dowman Griffiths):
 - This happens even without strong innate biases
- Experimental models (e.g. Cornish):
 - Give us direct evidence in the lab

(Kirby, Cornish, Smith forthcoming)

(Kirby, Cornish, Smith forthcoming)

 Participants exposed to artificial language made up of picture/string pairs (initially random)

(Kirby, Cornish, Smith forthcoming)

- Participants exposed to artificial language made up of picture/string pairs (initially random)
- Try and learn this

kunige

(Kirby, Cornish, Smith forthcoming)

- Participants exposed to artificial language made up of picture/string pairs (initially random)
- Try and learn this
- Tested on full set of "meanings"

(Kirby, Cornish, Smith forthcoming)

- Participants exposed to artificial language made up of picture/string pairs (initially random)
- Try and learn this
- Tested on full set of "meanings"
- Sample of output on test used as input language for next participant

Example initial language

Example final language (10 "generations" later)

• Confirms computational results: structure emerges that optimises *learnability* and *expressivity*

 It breaks any straightforward link between genes and language structure

- It breaks any straightforward link between genes and language structure
 - Adaptive structure no longer implies natural selection

- It breaks any straightforward link between genes and language structure
 - Adaptive structure no longer implies natural selection
 - Only weak innate biases required and may be weakened by co-evolution (Smith & Kirby)

- It breaks any straightforward link between genes and language structure
 - Adaptive structure no longer implies natural selection
 - Only weak innate biases required and may be weakened by co-evolution (Smith & Kirby)
 - Fits observations about genes and tone languages (Dediu & Ladd)

• Models build a lot in:

- Models build a lot in:
 - Learning complex signals

- Models build a lot in:
 - Learning complex signals
 - Inferring meanings

- Models build a lot in:
 - Learning complex signals
 - Inferring meanings
- The real evolutionary story?
 - Not: natural selection of innate constraints that determine language structure
 - Instead: pre-adaptations that enable iterated learning

• A number of other species produce learned complex sequential signals (e.g. birds)

- A number of other species produce learned complex sequential signals (e.g. birds)
- Transmitted by iterated learning, but do not carry semantics

- A number of other species produce learned complex sequential signals (e.g. birds)
- Transmitted by iterated learning, but do not carry semantics
- Evolves for other reasons
 - Complex learned song is fitness indicator (e.g. Ritchie, Kirby & Hawkey; Okanoya)

Inferring complex meanings is probably beyond birds

- Inferring complex meanings is probably beyond birds
- Possible cline of abilities in other primates
 - Although no other primate can learn complex sequential signals

- Inferring complex meanings is probably beyond birds
- Possible cline of abilities in other primates
 - Although no other primate can learn complex sequential signals
- Intentional inference plausibly evolves for reasons other than communication

- Darwin's suggestion: a musical protolanguage
- Substrate for later externalising of meaning (cf. Fitch; Mithen)

- Darwin's suggestion: a musical protolanguage
- Substrate for later externalising of meaning (cf. Fitch; Mithen)
- Ongoing experimental work (Scott-Phillips, Kirby & Ritchie):
 - How exactly do embodied sequential behaviours get exploited to carry meaning?
 - What biases do we have?

- Darwin's suggestion: a musical protolanguage
- Substrate for later externalising of meaning (cf. Fitch; Mithen)
- Ongoing experimental work (Scott-Phillips, Kirby & Ritchie):
 - How exactly do embodied sequential behaviours get exploited to carry meaning?
 - What biases do we have?
- Once this is in place, linguistic structure is delivered by adaptation through iterated learning
• The hypothesis we are chasing is this:

- The hypothesis we are chasing is this:
 - I. Humans are unique in having the biological prerequisites for learned complex signals and inference of meaning

- The hypothesis we are chasing is this:
 - I. Humans are unique in having the biological prerequisites for learned complex signals and inference of meaning
 - 2. Once we started using the former to signal the latter, cultural transmission of meaning-signal mappings became possible

- The hypothesis we are chasing is this:
 - I. Humans are unique in having the biological prerequisites for learned complex signals and inference of meaning
 - 2. Once we started using the former to signal the latter, cultural transmission of meaning-signal mappings became possible
 - 3. Cultural transmission of such mappings leads to adaptation of partially predictable structure optimising learnability and expressivity

- The hypothesis we are chasing is this:
 - I. Humans are unique in having the biological prerequisites for learned complex signals and inference of meaning
 - 2. Once we started using the former to signal the latter, cultural transmission of meaning-signal mappings became possible
 - 3. Cultural transmission of such mappings leads to adaptation of partially predictable structure optimising learnability and expressivity
 - 4. The key structural characteristics of human language are the inevitable consequence of this cultural adaptation process

- The hypothesis we are chasing is this:
 - I. Humans are unique in having the biological prerequisites for learned complex signals and inference of meaning
 - 2. Once we started using the former to signal the latter, cultural transmission of meaning-signal mappings became possible
 - 3. Cultural transmission of such mappings leads to adaptation of partially predictable structure optimising learnability and expressivity
 - 4. The key structural characteristics of human language are the inevitable consequence of this cultural adaptation process
- Still much work to be done, but multiple modelling strategies represent the best approach.